Hénon maps

The Hénon maps are a generalization of the function $z \mapsto z^2 + c$ to two complex variables. The Hénon map $H : \mathbb{C}^2 \to \mathbb{C}^2$ is given by

$$H \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 - ay + c \\ x \end{pmatrix},$$

with inverse

$$H^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{a} (y^2 + c - x) \\ y \end{pmatrix},$$

where a and c are both complex parameters.
Related sets

- K^+ and K^- are the sets of points with bounded orbits under H and H^{-1}, respectively.
- The filled Julia set is $K = K^+ \cap K^-$.
- J^+ and J^- are the boundaries of K^+ and K^-, respectively.
- $J = J^+ \cap J^-$ is the Julia set.
Related functions

Let

\[
G^+ \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \lim_{n \to \infty} \frac{1}{2^n} \log + \left\| H^n \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) \right\|
\]

\[
G^- \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \lim_{n \to \infty} \frac{1}{2^n} \log + \left\| H^{-n} \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) \right\|.
\]

\(G^+\) and \(G^-\) measure how quickly iterates of \(H\) (the Hénon map) and \(H^{-1}\) go to infinity.

The surfaces we studied were

\[
X_t = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2 \mid G^+ \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = G^- \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = t \right\},
\]

where \(t\) is a real nonnegative parameter. As \(t \to 0\), \(X_t\) approaches the Julia set \(J\).
What is known about X_t

For large t, it is known that X_t is homeomorphic to a torus (and as a result has Euler characteristic 0).

Why: If x and y are both large, then $G^+(x,y) \approx \log |x|$ and $G^-(x,y) \approx \log |y|$, so if t is large, then X_t consists of points where $\log |x| \approx \log |y|$, which means that $|x| \approx |y| \approx e^t$, and a point of X_t is determined by the arguments of x and y. This roughly describes a torus.
What does X_t look like?
Strategy for computing X_t

- **Goal:** Write a program, Cubism, which, given particular values for a, c, and t, generates an approximation of X_t and then uses the approximation to compute the Euler characteristic of each connected component of X_t.

- Take a region R in \mathbb{R}^4 (\mathbb{C}^2), subdivide this region into many four-dimensional cubes, and determine which cubes contain a part of the surface X_t.

- The collection of cubes S that are found is the desired approximation of X_t.
Strategy for analysis of X_t

- In the case of the surfaces X_t, we can classify the connected components of the surfaces by their Euler characteristics.

- Since S should be a thickening of X_t, we can compute the Euler characteristic of X_t by computing the Euler characteristic χ of S using the formula

$$\chi(S) = \sum_{k=0}^{4} (-1)^k n_k,$$

where n_k is the number of k-dimensional faces in S.

- Also, we color the three-dimensional projections of X_t by using the missing dimension.
Finding S

- Make some subdivision of R into four-dimensional cubes.
- Run through each two-dimensional face that touches at least one four-dimensional cube in R.
- The intersections of a two-dimensional face with the sets $c^+ = \{G^+ = t\}$ and $c^- = \{G^- = t\}$ are each one-dimensional curves. If these curves intersect each other in the face in question, then all 4 four-dimensional cubes which touch this face are added to S.
- How to *efficiently* determine whether or not c^+ intersects c^- in a particular face?
Vertex decisions

- Examine the signs of the functions $G^+ - t$ and $G^- - t$ at the vertices of the face.
- Certain combinations of signs at the vertices can ensure that c^+ will intersect c^- on a face.

For example, say that the signs on a face are as below:

\[
\begin{array}{cc}
G^+ : + & G^+ : - \\
G^- : + & G^- : + \\
\end{array}
\]

\[
\begin{array}{cc}
G^+ : + & G^+ : - \\
G^- : - & G^- : - \\
\end{array}
\]
Vertex decisions: a “yes” face

In this case, we can be sure that c^+ and c^- intersect in that face, looking something like this:

In the case above and in similar cases (when we can be sure that there is an intersection), we mark the face in question as a “yes”.
Vertex decisions: a “maybe” face

On the other hand, this combination of signs

\[
\begin{array}{c|c}
G^+ : + & G^+ : - \\
G^- : + & G^- : + \\
\end{array}
\]

could manifest itself in any of the following situations:
Problems with vertex decisions

If this algorithm marks a face as a “yes”, then \(c^+ \) and \(c^- \) definitely intersect within the face. But even if we consider \(S \) to be the set of all “yes” cubes and all “maybe” cubes, we still miss cubes that should be in \(S \).

Either \(G^+ - t \) or \(G^- - t \) could change signs twice, resulting in signs at the vertices that are identical to the case where the function does not change sign at all. (See the diagram at right.)
A picture with gaps

Using only the vertex decision method resulted in approximations of X_t that had gaps in them (cubes that should have been in S but weren’t):
Getting around problems with vertex decisions

- Given an infinite amount of time (and/or computational power), we could fix the problem by making a finer subdivision of R.
- But Cubism takes time $O(N^4)$, if N is the number of subdivisions on a side, so it wasn’t reasonable to simply increase N.
- Instead, we needed a better algorithm.
Newton’s Method

- Using a two-dimensional version of Newton’s method, we attempt to find a common root of the functions $G^+ - t$ and $G^- - t$, with the initial point in the center of the face.

- We iterate Newton’s method a fixed number of times (5) and then try to determine whether Newton’s method is converging to a root.

- If it is, then there is an intersection of c^+ and c^- in the face, and we mark the face as a “yes”.
Determining whether Newton’s Method is converging

- It is difficult to determine whether or not Newton’s method is really converging to a root within the face. (Could mistake convergence of Newton’s Method to a root on the face in question for converging to a root that is on another face.)

- Our criteria for convergence: if the final iterate of Newton’s method is still within the face it started in, \(and \) both \(G^+ \) and \(G^- \) are within \(\epsilon \) of \(t \), then we mark this face as a “yes”. (Set \(\epsilon = .01 \).)

- The second condition attempts to ensure that Newton’s method is in fact converging, and the first condition attempts to ensure that Newton’s method is converging to a root inside the face it started in.
Subdivision and Refinement

- If we choose an initial subdivision N (so that each side of R is divided into N subdivisions), then we end up with N^4 cubes.

- A larger N results in a better approximation of the surface X_t, so we want to run Cubism for as large an N as possible.

- We use a method that allows us to start with a reasonable initial subdivision (i.e., not too large), and then “refine” the resulting cubes into smaller and smaller cubes.
Subdivision and Refinement, cont.

Start with some initial subdivision, and let S_0 be the resulting set S of cubes marked as a “yes” or a “maybe”. In the lower-dimensional diagram at right, S_0 is the set of shaded boxes:

For each four-dimensional cube in S_0, perform another subdivision, and let S_1 be the resulting collection of cubes. Repeat as desired. At right, S_1 is the set of shaded cubes:
Subdivision and Refinement, cont.

- Note that if subdivisions N_0, N_1, \ldots, N_k are used, then the final thickening of X_t is the set S_k.

- In theory, we should obtain the same thickening of X_t by doing this procedure or by choosing the sole subdivision to be $N_0 \cdot N_1 \cdot N_2 \cdots N_k$.

- In practice, this doesn’t quite work—if both the vertex decision algorithm and the Newton’s method algorithm mark a face a “no” that should be a “yes” or “maybe”, then not only will that cube not be included in S, but that cube will also not be refined (further subdivided).