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Introduction

Generators and relations have always been an important tool for studying groups, and if we are given
a group G it is useful to study generating sets of G. If G is a finite group (or even a finitely generated
group), we let a “generating sequence” be any finite n-tuple (g1, . . . , gn) so that 〈g1, . . . , gn〉 = G.
Since generating sequences are ordered, and allow elements to occur multiple times, it is often useful
to work with them as opposed to finite generating sets. This thesis studies generating sequences as
well as some group-theoretic ideas that use generating sequences in a central way.

The main motivation for studying this topic comes from an algorithm in computational group
theory, the Product Replacement Algorithm. This algorithm generates a random element of a given
finite group G, in the following manner. We start with a generating sequence (g1, . . . , gn) of G.
Then, we randomly pick a coordinate gi, and replace it by a product gjgi, g−1

j gi, gigj , or gig−1
j

(with j 6= i chosen at random, and the product in question chosen at random). This results in
another generating sequence; we can then repeat this random “product replacement” a fixed number
of times. This leaves us with a generating sequence (g′1, . . . , g

′
n), and the algorithm returns g′1 as our

“randomly-generated element”.
This algorithm was first introduced in the early 1990’s. It seemed to successfully generate

uniformly-distributed randomly elements, and worked faster than other techniques for randomly
generating elements (see [CLGM+95]). Some progress was made towards a theoretical understanding
of this success. A landmark paper of Diaconis and Saloff-Coste [DSC98] gave bounds on the number
of product replacements necessary for the algorithm to work well. Pak’s paper “What do we know
about the product replacement algorithm?” [Pak99] summarizes some of the initial progress made
towards understanding this algorithm, as well as the important questions that still remain.

One of the most important questions towards understanding the product replacement algorithm
is “Given a group G and an integer n, can a series of product replacements connect any two length n
generating sequences?”. This is a question in pure group theory, and it had been studied previously
in the group theory literature (under the name of “T -systems”). However, there is much still to do,
and a number of other interesting related questions. This thesis discusses some of these. I have also
tried to collect many of the important results related to these questions, with full proofs.

Sections 1 and 2 discusses some general theoretical questions about generating sequences. We
mention various techniques for determining how many generating sequences there are of a fixed
length n for a fixed group G, and for working with the set of these sequences. Some of the most
important results are due to a paper of Gaschütz [Gas55], which deal with generating sequences in
quotient groups and direct products.

In Section 3, we develop some of the theory to study when we can connect two length n generating
sequences by product replacements. Our approach to this is to construct a group of “elementary
operations,” generated by the product replacement operations. This group then acts on the set of all
length n generating sequences, and two sequences can be connected by product replacements if and
only if they are in the same orbit. So, any pair of sequences can be connected with each other if and
only if the action is transitive. A result of Dunwoody [Dun70] shows that if G is solvable and n is
longer than the shortest possible length of a generating sequence of G, then the action is transitive.
Another result of Diaconis and Graham [DG99] shows that if A is abelian and n equals the shortest
possible length, then the orbits of the action are parametrized by a certain “determinant function.”
This result suggests a method for defining an algebraic K-theory for finite groups.

Section 4 discusses “homogeneous groups,” which satisfy a certain uniformity property related
to generating sequences. In particular, we are interested in the “homogeneous cover” of a group
G, which is a homogeneous group with a distinguished generating sequence that can map to any
generating sequence of G. The concept of a homogeneous group was introduced by Gaschütz in
[Gas55]. Most of the results in this section are due to Keith Dennis and some of his colleagues, in
particular Ken Brown, Steve Chase, and Laurent Saloff-Coste.

Finally, Section 5 discusses some of the ideas and computations that I have worked on with
Keith Dennis as an undergraduate research project. They are mainly based on trying to extend
the previously-mentioned result of Diaconis and Graham, to understand the action of “elementary
operations” on the set of all generating sequences of a group G of the shortest possible length. One
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approach we worked on involved constructing more general determinant functions. We also made
many computations, in particular for when G is a p-group, to better understand the general behavior
of the elementary operations.

The results discussed in this thesis come from many sources: some are well-known or part of
the “folklore,” others have to my knowledge not previously appeared anywhere, and a few are new
from this project. I have tried to give proper credit where possible. Many of the results, especially
those in the first three sections, had been previously collected by my advisor Keith Dennis in an
unpublished paper [Den09].

The necessary background for this thesis is an introduction to group theory, such as the first six
chapters of Abstract Algebra by Dummit and Foote [DF04]. Beyond this background, this thesis
should be self-contained; I have given full proofs of most of the results we need (though a few results
are cited that are far beyond our scope).

Finally, we mention some possibly nonstandard notation and conventions that we use. We use
f [X] and f−1[Y ] to denote an image and a preimage under a function f . We define the commu-
tator [g1, g2] as g−1

1 g−1
2 g1g2. We use Zn to denote a cyclic group of order n, and write this group

multiplicatively (if we want to write a cyclic group additively, we denote it Z/nZ).

1 Generating Sequences

The fundamental objects we’re interested in are generating sequences of finite groups:

Definition 1.1. A generating sequence (of length n) of a finite group G is a finite sequence
(g1, . . . , gn) of elements of G that generate G.

By definition of the subgroup generated by a set, a sequence (g1, . . . , gn) generates G if and only
if every element of G can be written as a product of the elements gi and their inverses.

Definition 1.2. We let Γn(G) denote the set of length n generating sequences; it is a subset of Gn,
the set of all length n sequences in G.

Definition 1.3. We let ϕn(G) denote the number of length n generating sequences (i.e. ϕn(G) =
|Γn(G)|). Following [Hal36], we call this the n-th Eulerian function.

Definition 1.4. We define r(G) as the smallest integer n so that G has a generating sequence of
length n.

We remark that there does not seem to be a standard notation for this quantity, and that
various symbols have been used for it in the literature (most commonly d(G) or m(G)). Note that
if n < r(G), Γn(G) is empty by definition. If n = r(G), then Γn(G) is nonempty, as we can take a
length r(G) generating sequence and append any sequence of n− r(G) elements to the end.

Example 1.5. By definition, we have r(G) = 1 if and only if G is generated by a single element, if
and only if G is a cyclic group. If we let G = Zp be a cyclic group of prime order, any non-identity
element of Zp generates it. Therefore, any sequence of n elements in Zp other than (1, . . . , 1) is a
generating sequence. This means that

Γn(Zp) = Znp \ {(1, . . . , 1)},

and in particular
ϕn(Zp) = pn − 1.

We can extend this computation to an arbitrary finite cyclic group Zm. In particular, if m has prime
decomposition pa1

1 · · · p
ak

k (where the pi are distinct primes and the ai are positive), we have

ϕn(Zm) = p
n(a1−1)
1 (pn1 − 1) · · · pn(ak−1)

k (pnk − 1). (1)

It is possible to prove this directly. Alternatively, it will follow easily from the computation of ϕn(Zp)
given some theoretical results we will prove in Sections 1.3 and 2.1; see Corollary 2.10.
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While it is easy to understand groups with r(G) = 1, there is no easy description of groups satis-
fying r(G) = n for any fixed n > 1. Even groups with r(G) = 2 can be surprisingly complicated. For
instance, all nonabelian finite simple groups satisfy r(S) = 2 (the proof of this uses the Classification
Theorem of Finite Simple Groups). Also, if we let A5 denote the alternating group on 5 symbols,
and An5 denote the direct product of n copies of A5, we have r(A19

5 ) = 2 but r(A20
5 ) = 3. This is a

consequence of Theorem 2.22 proved in Section 2.3.

1.1 Basic Techniques

The Eulerian function of a group was introduced by Philip Hall in [Hal36]. In this paper, Hall also
gave a method for computing ϕn(G). He introduced the “Möbius function of a finite group,” which
is related to the classical Möbius function from number theory. In fact, both of these concepts can
be generalized to define a Möbius function for a finite partially ordered set (see for instance Chapter
25 of [vLW03]).

Definition 1.6. Given a finite group G, define the Möbius function µG as an integer-valued function
on the set of all subgroups of G. In particular, we define µG(G) = 1, and for H < G we define
recursively

µG(H) = −
∑

K:H<K≤G

µG(K)

We can restate this by saying that if H < G, we have∑
H≤K≤G

µG(K) = 0.

This allows us to prove a Möbius inversion theorem, analogous to classical Möbius inversion:

Theorem 1.7. Let f(H) be a function on the subgroups of G, and let F (H) be the summation
function defined by F (H) =

∑
K:K≤H f(K). Then, we have

f(G) =
∑
H≤G

µG(H)F (H).

Proof. Expanding out the sum defining F (H), we have∑
H≤G

µG(H)F (H) =
∑
H≤G

∑
1≤K≤H

µG(H)f(K).

We can then switch the order of the sums, giving

∑
H≤G

µG(H)F (H) =
∑
K≤G

 ∑
K≤H≤G

µG(H)

 f(K).

By definition of the Möbius function, this reduces to µG(G) · f(G) = f(G).

To apply this to our situation, let f(H) = ϕn(H) = |Γn(H)|. Since there are |G|n length n
sequences in G, and each one generates a subgroup H ≤ G,∑

1≤H≤G

ϕn(G) =
∑

1≤H≤G

|Γn(H)| = |G|n.

Applying Möbius inversion gives Hall’s formula for ϕn(G):

Corollary 1.8.
ϕn(G) =

∑
H≤G

µG(H)|H|n.
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This is an effective method for computing ϕn(G). However, it doesn’t help much with a theoret-
ical understanding of ϕn(G) - we can’t even tell whether ϕn(G) is zero or not without going through
the full computation! Ideally, we would like a more explicit formula for ϕn(G), such as the one we
stated above for ϕn(Zm). We would also like if the formula was associated to a description of the
generating sequences Γn(G).

We could hope to find such a formula that is valid for a single group and some range of n, or for
some particular class of G and a single value of n. One such example where this is possible is for
two-element generating sequences of dihedral groups:

Example 1.9. Let D2n denote the dihedral group of order 2n. We know D2n is generated by two
elements R (“rotation”) and F (“flip”) that satisfy Rn = F 2 = 1 and RF = FR−1. Since D2n is
not cyclic, this means r(D2n) = 2.

We claim that ϕ2(D2n) = 3nϕ(n), where ϕ(n) is Euler’s phi function. In particular, we claim
that the elements of Γ2(D2n) fall into three classes:

1. Sequences (RiF,Rj) with 1 ≤ i, j ≤ n and (j, n) = 1.

2. Sequences (Ri, RjF ) with 1 ≤ i, j ≤ n and (i, n) = 1.

3. Sequences (RiF,RjF ) with 1 ≤ i, j ≤ n and (j − i, n) = 1.

By definition, there there are ϕ(n) integers between 1 and n that are coprime to n, so there are
nϕ(n) sequences in each of these three classes, and thus ϕ2(D2n) = 3nϕ(n).

Note that any element of D2n is of the form RiF j for 0 ≤ i < n and 0 ≤ j < 2. Therefore, any
generating sequence is of the form (RiF j , RkF `), and we can’t have j = ` = 0 because then the
sequence would generate a subgroup of 〈R〉. So, it remains to check that the other three cases for
k, ` correspond to the classes (1), (2), (3) listed above.

First, consider a sequence of the form (RiF,Rj). If (j, n) = 1 then Rj generates 〈R〉, so in
particular generates R. Then it generates R−i and hence F = R−iRiF , so the sequence generates
D2n. Conversely, if (RiF,Rj) generates, note that (RiF )−1 = RiF and (RiF )Rj = RiR−jF =
(Rj)−1(RiF ). Therefore, any product of RiF , Rj , and their inverses can be written in the form
(Rj)k(FRi)` for 0 ≤ k < n and 0 ≤ ` < 2, and moreover this element is in the coset F `〈R〉 of the
subgroup 〈R〉. So, if 〈RiF,Rj〉 = D2n, we can write R = (Rj)k(FRi)`. Since R ∈ 〈R〉, we must
have that ` = 0, so 〈Rj〉 generates the cyclic group 〈R〉. This means (j, n) = 1, as desired. So, the
sequences of the form (RiF,Rj) that generate are exactly those in class (1).

An identical argument shows that the sequences of the form (Ri, RjF ) that generate are those
with (i, n) = 1, so exactly those in class (2). Finally, consider a sequence of the form (RiF,RjF ).
If this generates, then so does (RiF,Rj−i) because RjF = Rj−iRiF . By the above, (j − i, n) = 1.
Conversely, if (j − i, n) = 1 then (RiF,Rj−i) generates. Since Rj−i = (RjF )(RiF )−1, this means
(RiF,RjF ) generates, as desired. So class (3) exactly describes the generating sequences of this
form.

Another way to study the set Γn(G) is to work with group actions on it. For instance, the
symmetric group Sn acts (on the right) on Γn(G) by permuting the coordinates of a generating
sequence, i.e. by

(g1, . . . , gn) · σ = (gσ(1), . . . , gσ(n))

Another group that acts on Γn(G) is Aut(G), the group of automorphisms of G, by applying each
automorphism coordinatewise:

α · (g1, . . . , gn) = (α(g1), . . . , α(gn)).

The action of the automorphism group is particularly useful:

Proposition 1.10. The action of Aut(G) on Γn(G) is free (i.e. if α ∈ Aut(G) satisfies α · s = s
for some s ∈ Γn(G), then α = id). Therefore, the order |Aut(G)| divides the cardinality |Γn(G)|.
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Proof. Let s = (g1, . . . , gn) be a generating sequence so that α · s = s. Then α(gi) = gi for each i.
Since α is an automorphism, we know α(g−1) = α(g)−1 and α(gh) = α(g)α(h), so α(g) = g for any
g that can be written as a product of the gi and their inverses. Since (g1, . . . , gn) is a generating
sequence, this holds for all g ∈ G, and α is the identity function.

By the orbit-stabilizer theorem, each orbit of Γn(G) under Aut(G) has size |Aut(G)|. Since
Γn(G) is a disjoint union of its orbits, |Γn(G)| is a multiple of |Aut(G)|.

Definition 1.11. We let hn(G) = |Γn(G)|/|Aut(G)|. This is called the reduced Eulerian function.
It is an integer by the above proposition, and is equal to the number of orbits of the action of Aut(G)
on Γn(G).

The reduced Eulerian function will be important to us later on. For now, we remark that when
Hall defined this function in his paper [Hal36], he used his Möbius function formula to compute
h2(A5) = 19. He used this to prove the fact we mentioned above, that A19

5 can be generated by two
elements but A20

5 cannot; see Section 2.3.
Another method for thinking about generating sequences is in terms of homomorphisms out of a

free group. If we let Fn denote the free group with n generators and let x1, . . . , xn be a free basis for
Fn, then for any sequence (g1, . . . , gn) there is a unique homomorphism π : Fn → G with π(xi) = gi
for each i. Since the image of Fn is generated by the image of the generating set {x1, . . . , xn},
π is surjective if and only if (g1, . . . , gn) is a generating sequence. Therefore, there is a bijective
correspondence between Γn(G) and the set of surjective homomorphisms π : Fn → G.

Definition 1.12. If s = (g1, . . . , gn) is a generating sequence, we let πs : Fn → G denote the
surjective homomorphism given by πs(xi) = gi. We let Ks denote the kernel of πs.

The kernels Ks are closely related to the action of Aut(G) on Γn(G):

Proposition 1.13. Two generating sequences s, t ∈ Γn(G) are in the same orbit under Aut(G) if
and only if Ks = Kt.

Proof. Let s = (s1, . . . , sn) and t = (t1, . . . , tn). If s, t are in the same orbit, there is an automorphism
α with α · s = t. Then,

πt(xi) = ti = α(si) = α(πs(xi)).

Since πt and α ◦ πs agree on a generating set {x1, . . . , xn} of Fn, they are equal as functions. Since
α is invertible, kerπt = ker(α ◦ πs) = kerπs.

Conversely, assume Ks = Kt. Since Ks ⊆ kerπt, the universal property for quotient groups
implies that πt factors through Fn/Ks, i.e. πt = α ◦ πs for some homomorphism α : G → G.
Similarly, since Kt ⊆ kerπs, πs = β ◦ πt for some homomorphism β : G → G. Combining these
equations, we get πs = β ◦ α ◦ πs, and surjectivity of πs means β ◦ α is the identity map. Similarly
α ◦ β is the identity; this means α is invertible and hence an automorphism. Therefore, we have

ti = πt(xi) = α(πs(xi)) = α(si),

so t = α · s and hence t, s are in the same orbit.

1.2 Irredundant Generating Sequences

Irredundant generating sequences are those that contain “just enough” elements to generate:

Definition 1.14. A generating sequence (g1, . . . , gn) of a finite group G is irredundant if no proper
subsequence generates G (i.e. if there is no element gi that we can remove from the sequence and
still get a generating sequence). A generating sequence that has a proper subsequence that generates
is called redundant.

Any generating sequence of length r(G) is irredundant, because no sequence of length r(G)− 1
generates G. However, irredundant generating sequences do not need to be of length r(G). For
instance, (2, 3) is an irredundant generating sequence of the cyclic additive group of Z/6Z.
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It is often useful to know whether generating sequences that we are working with are redundant
or not. In particular, we would like to know when a generating sequence is “long enough” that it is
forced to be redundant. Accordingly, we define:

Definition 1.15. For a finite group G, let r(G) be the maximum length of an irredundant generating
sequence.

By the pigeonhole principle, |G| is a crude upper bound for r(G) (any sequence of length greater
than |G| must have a repeated element, so must be redundant). In particular, this shows that r(G)
exists for every finite group.

We can get a better upper bound on r(G) as follows. For a positive integer n, let λ(n) be the total
number of prime factors of n (so if n has prime factorization pa1

1 · · · p
ak

k , then λ(n) = a1 + · · ·+ an).
Then, we have:

Proposition 1.16. r(G) ≤ λ(|G|).

Proof. Suppose (g1, . . . , gn) is an irredundant generating sequence of G. Define a sequence of sub-
groups Gi = 〈g1, . . . , gi〉 of G (note Gn = G, and take G0 = 1 for convenience). By irredundancy,
gi cannot be generated from g1, . . . , gi−1, so we have Gi−1 � Gi for each i. This means each index
[Gi : Gi−1] is greater than 1, so some prime qi divides it. We can write the order of G as a product
of the indices of these subgroups:

|G| = [Gn : Gn−1] · · · [G2 : G1][G1 : G0].

This means that a product of n primes qn · · · q1 divides |G|, so n cannot be greater than λ(|G|).

This upper bound is sharp in the sense that there are groups with r(G) = λ(G). Berkovich
[Ber86] proves that such groups are exactly the “complemented groups” discussed by Hall [Hal37].
One of the equivalent classifications of such groups is as subgroups of direct products of groups of
squarefree order. (Groups of squarefree order have been completely classified as well, by Hölder in
1895. A corollary to this classification is that every group of squarefree order is a semidirect product
of two cyclic groups.)

Also, we remark that it is nontrivial to compute r(G), even for well-understood groups. It
is easy to see that symmetric groups satisfy r(Sn) ≥ n − 1, as the sequence of transpositions
(1 2), (1 3), . . . , (1 n) is irredundant. Similarly, alternating groups satisfy r(An) ≥ n− 2, by taking
a sequence (1 2 3), (1 2 4), . . . , (1 2 n) of 3-cycles. It turns out that equality holds in these cases: we
have r(Sn) = n−1 and r(An) = n−2 (see [Whi00]). However, the proof of this uses the classification
theorem of finite simple groups!

Given a group G, we know that the minimum size of an irredundant generating sequence is r(G)
and the maximum size of an irredundant generating sequence is r(G). It turns out that there is an
irredundant sequence of every length between r(G) and r(G) as well. This is a consequence of a
more general result of Tarski; see [Tar75] or Chapter II.4 of [BS]. We give a proof specialized to our
case:

Theorem 1.17. If r(G) ≤ n ≤ r(G), G has an irredundant generating sequence of length n.

Proof. We show that if we have an irredundant generating sequence s of length k ≥ r(G) + 1, then
there exists an irredundant sequence of length k − 1. This suffices to prove the theorem, as we can
start with k = r(G) and recursively find irredundant sequences of all sizes down to r(G).

Start with sequence s = (s1, . . . , sk) of length k ≥ r(G) + 1. For any element g ∈ G, we can
write g as a product of some sequence of the si and their inverses. We will come up with a metric
for comparing “how far apart” s and another sequence t are, and show that the “closest” sequence
t of length less than k must have length k − 1 and be irredundant.

To formalize this, let `(g) denote the length of the shortest word in the si and s−1
i that equals

g in G. Given a sequence t = (g1, . . . , gn) ∈ Gn, define `(t) =
∑
`(gi), m(t) = max{`(gi)}, and

f(t) = |{i : `(ti) = m(t)}|. The function `(t) is our measure of how far t is from s, with m(t) and
then f(t) serving as “tiebreakers”.
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We then take t to be a generating sequence of length less than k that is minimal relative to this
measure; i.e. if t′ is another generating sequence of less than k, then either `(t) < `(t′), or `(t) = `(t′)
and m(t) < m(t′), or `(t) = `(t′), m(t) = m(t′), and f(t) ≤ f(t′). Such a t exists because the set
of all images (`(t),m(t), f(t)) ∈ N3 is finite, and therefore has a minimal element with respect to
the lexicographic order. We then need to show that this minimality implies t is irredundant and of
length k − 1.

So, assume that t is redundant, and thus a proper subsequence t′ of t generates. By rearranging t,
we can assume without loss of generality that t′ is t with t1 removed. Then, we must have `(t1) = 0
(otherwise `(t′) < `(t) and t can’t be minimal), so t1 = 1. Moreover, we must have `(ti) > 1 for
some i, or else the non-identity elements of t would all be either sj or s−1

j ; since there are fewer
than k of them, t would correspond to a proper subsequence of s and thus could not generate. Pick
i so `(ti) = m(t), and write ti = s±1

i g for some g with `(g) = `(ti)− 1. If we define t′′ by replacing
t1 = 1 with si and replacing ti with g, then `(t′′) = `(t) (as `(t′′1) = `(t1) + 1 and `(t′′i ) = `(ti)− 1).
Moreover, we must either have m(t′′) < m(t) or f(t′′) < f(t), because we replaced ti that satisfied
`(ti) = m(t) with t′′i such that `(t′′i ) < m(t). Either way, (`(t′′),m(t′′), f(t′′)) < (`(t),m(t), f(t)),
contradicting minimality of t. So, t must be irredundant.

Now, let t have length m < k. Again we must have `(ti) > 1 for some i, and we can assume
without loss of generality that `(t1) = m(t) > 1. Write t1 = s±1

j g with `(g) = `(t1)− 1, and let τ be
the generating sequence (sj , g, t2, . . . , tm) of length m + 1. Note `(t) = `(τ), as we replace t1 with
sj and g with `(sj) = 1 and `(g) = `(t1) − 1. Again we either have m(τ) < m(t) or m(τ) = m(t)
and f(τ) < f(t) because we removed an element of maximum `-value. So, (`(τ),m(τ), f(τ)) <
(`(t),m(t), f(t)). By minimality of t, τ must not have length less than k, and thus its length m+ 1
must equal k. This proves that the length of t is k − 1, as desired.

So, r(G) and r(G) completely determine the set of lengths attained by irredundant sequences in
G. On the other hand, there are no restrictions on r(G) or r(G) besides r(G) ≤ r(G). In particular,
for any fixed r ≤ r, we can construct a group with r(G) = r and r(G) = r. An example of such a
group is Zrp × Zm where p is a prime number and m is a product of r − r primes p1, . . . , pk which
are distinct from each other and from p. This is a consequence of some results proven later (in
particular, Propositions 2.8, 2.9, 2.10, and 2.20).

An interesting open question is to characterize groups with r(G) = r(G), and in particular what
groups satisfy r(G) = r(G) = 2. Proposition 2.20 shows that Zrp satisfies satisfies r(G) = r(G) = r
for p prime. A fact known as the “Burnside basis theorem” implies that r(G) = r(G) for any p-group
G. (This theorem states that G/Φ ∼= Zrp , where Φ is the “Frattini subgroup” defined in the next
section. Proposition 1.30 in that section implies r(G) = r(Zrp) and r(G) = r(Zrp)).

1.3 Quotients and Generating Sequences

If h : G → H is a surjective homomorphism, applying h element-wise to a generating sequence
of G gives a generating sequence of H. This proves r(H) ≤ r(G), and moreover induces a map
Γn(G)→ Γn(H):

Definition 1.18. If G,H are finite groups and h : G → H is a surjective homomorphism, define
h : Γn(G)→ Γn(H) by h(g1, . . . , gn) = (h(g1), . . . , h(gn)).

By the first isomorphism theorem, it is equivalent to work with quotient groups G/N . While we
know r(G/N) ≤ r(G), it is less obvious how to relate r(G/N) to r(G) and how to relate ϕn(G/N)
and ϕn(G). The right way to approach this problem is to start with generating sequences in G/N :

Definition 1.19. If s = (s1, . . . , sn) is a sequence of G/N , a lift of s is a sequence ŝ = (g1, . . . , gn)
that projects to s (so si = giN for each i).

An obvious question to ask is whether a particular generating sequence s ∈ Γn(G/N) has a lift
to a generating sequence of Γn(G). It is clear that n ≥ r(G) is a necessary condition. Surprisingly,
this is also sufficient; every generating sequence of G/N of length at least r(G) has a lift. This was
proven by Gaschütz in [Gas55]. We prove it as a corollary to a stronger result, which is attributed
to Roquette (see p.361 of [FJ08]).
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Lemma 1.20. Any two generating sequences s, s′ of G/N with the same length have the same
number of lifts to generating sequences of G. (This number may be zero.)

Proof. We prove this by induction on |G|. The base case of |G| = 1 is trivial, as G/N must be the
trivial group, so it only has one generating sequence.

For the inductive step, fix some G and N , and assume that we know the result holds for every
group H (and every N ′ � H) with |H| < |G|. Let s be a length k generating sequence of G/N .
There are |N |k lifts of s to G; if s = (g1N, . . . , gkN) then we can take any ŝ = (g1n1, . . . , gknk) for
ni ∈ N .

Any such ŝ generates some subgroup H ≤ G. For each subgroup, define fH(s) to be the number
of lifts ŝ that generate H. We have the identity

|N |n =
∑
H≤G

fH(s),

which we can rearrange to
fG(s) = |N |n −

∑
H<G

fH(s).

Now, fG(s) is the number of lifts of s to generating sequences of G. To show that fG(s) is constant
as a function of s ∈ Γk(G/N), it suffices to show that the right hand side is independent of s.

Fix some lift ŝ so that 〈g1n1, . . . , gknk〉 = H < G. Any element gN ∈ G/N can be written as
a product of the giN = (gini)N and their inverses. Thus, the corresponding product g′ ∈ G of the
(gini) and their inverses satisfies g′N = gN , so g = g′n for g′ ∈ 〈g1n1, . . . , gknk〉 = H and n ∈ N .
Since g was arbitrary we have G = HN . Therefore, we have

fG(s) = |N |n −
∑

H<G,HN=G

fH(s).

For fixed H with HN = G, we can apply the second isomorphism theorem to get an isomorphism

G/N = HN/N ∼= H/(H ∩N).

Applying this isomorphism to s gives a generating sequence s̃ of H/(H ∩N). A generating sequence
(h1, . . . , hn) of H projects to s in G/N if and only if it projects to s̃ in H/(H ∩ N). So, fH(s)
is exactly the number of lifts of a length k generating sequence in H/(N ∩ H) to a generating
sequence of H. Since |H| < |G|, we know by induction that fH(s) is independent of s. Therefore,
fG(s) = |N |n−

∑
H<G fH(s) is independent of s, finishing the inductive step and hence the proof.

Corollary 1.21 (Gaschütz’s Lemma). If n ≥ r(G) and s ∈ Γn(G/N), s has a lift to a generating
sequence of G.

Proof. Since n ≥ r(G), G has a generating sequence s′ of length n, which projects to a generating
sequence s̃′ ∈ Γn(G/N). By Lemma 1.20, s and s̃′ have the same number of lifts to generating
sequences of G. Since s̃′ has at least one, so does s.

This can easily extend to surjective homomorphisms h : G → H. Given a sequence (g′1, . . . , g
′
n)

of H, we define a lift to be a sequence (g1, . . . , gn) in G so that h(gi) = g′i. By the first isomorphism
theorem, Lemma 1.20 gives that all generating sequences of the same length in H have the same
number of lifts to generating sequences of G, and Corollary 1.21 gives that any generating sequence
in H of length n ≥ r(G) has a lift to a generating sequence of G. Therefore, we have:

Corollary 1.22. If h : G→ H is a surjective homomorphism and n ≥ r(G), the map h : Γn(G)→
Γn(H) defined in Definition 1.18 is surjective.

Moreover, we can define:

Definition 1.23. If ϕ : G → H is a surjective homomorphism, we define the n-th lifting index
JG : HKn as the number of lifts of a length n generating sequence of H to a generating sequence of
G.
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Though our notation does not include the homomorphism h : G → H, it is not immediately
obvious that JG : HKn is the same for all surjective homomorphisms h : G → H. The following
proposition shows this is true, and relates the Eulerian function of G to the Eulerian function of any
homomorphic image H:

Proposition 1.24. If H is a homomorphic image of G, we have ϕn(G) = JG : HKnϕn(H). In
particular, this gives an alternative definition of the lifting index as ϕn(G)

ϕn(H) , which is independent of
the surjective homomorphism G→ H.

Proof. We can write Γn(G) as the disjoint union of sets Γs (for s ∈ Γn(H)), where Γs consists of
the sequences projecting to s (under some fixed surjective homomorphism ϕ : G→ H). Since each
set Γs has cardinality JG : HKn, we have

ϕn(G) = |Γn(G)| = JG : HKn|Γn(H)| = JG : HKnϕn(H),

as desired.

Corollary 1.25. Lifting indices are multiplicative; if H is a homomorphic image of G and K is a
homomorphic image of H, then

JG : KKn = JG : HKnJH : KKn.

Proof.

JG : KKn =
ϕn(G)
ϕn(K)

=
ϕn(G)
ϕn(H)

ϕn(H)
ϕn(K)

= JG : HKnJH : KKn.

Finally, as a corollary to the proof of Lemma 1.20, we can give a formula for JG : HKn using the
Möbius function from Definition 1.6.

Proposition 1.26. If N is the kernel of a surjective homomorphism G→ H, then

JG : HKn =
∑

K≤G:KN=G

µG(K)|K ∩N |n.

Proof. In the proof of Lemma 1.20, we wrote

|N |n =
∑
K≤G

fK(s),

where fK(s) was the number of lifts of s to a generating sequence of K. Moreover, we showed that
fK(s) was only nonzero if KN = G, and that in that case we proved fK(s) was the number of lifts
of a generating sequence in K/K ∩N to K, i.e. fK(s) = JK : K ∩NKn. Thus,

|N |n =
∑

K≤G:KN=G

JK : K ∩NKn.

For any L ≤ G, we can apply the same argument to the set of lifts of some s ∈ Γn(L ∩ N) to
sequences in L, to get

|L ∩N |n =
∑

K≤L:K(L∩N)=L

JK : K ∩ (L ∩N)Kn =
∑

K≤L:K(L∩N)=L

JK : K ∩NKn. (2)

We want to apply Möbius inversion (Theorem 1.7) to obtain the desired formula. This requires a
little care, as the theorem requires a summatory function F (L) =

∑
K≤L f(K) that sums over all

K ≤ L. To do this, define an “indicator function” for subgroups (as a function of K):

1KN=G =
{

1 KN = G
0 KN 6= G

.

11



We claim that we have

1LN=G|L ∩N |n =
∑
K≤L

1KN=GJK : K ∩NKn. (3)

If LN 6= G, then KN 6= G for any K ≤ L, so both sides of equation 3 are zero and hence the
equation holds. If LN = G, we claim KN = G holds if and only if K(N ∩ L) = L. To see this,
note that if KN = G then any element ` ∈ L is a product of an element k ∈ K and n ∈ N ,
and moreover n = k−1` ∈ L means ` = kn ∈ K(N ∩ L). Conversely, K(N ∩ L) = L implies
KN = K(N ∩ L)N = LN = G. Thus, if LN = G we can use equation 2 to prove equation 3:

1LN=G|L ∩N |n = |L ∩N |n =
∑

K≤L:K(N∩L)=L

JK : K ∩NKn =
∑
K≤L

1KN=GJK : K ∩NKn.

We can then apply Möbius inversion to equation 3, which gives

JG : NKn =
∑
K≤G

µG(K)1KN=G|K ∩N |n =
∑

K≤G:KN=G

µG(K)|K ∩N |n.

Another corollary to Gaschütz’s lemma is the behavior of r(G) under quotients:

Proposition 1.27. If G is a finite group and N a normal subgroup, r(G/N) ≤ r(G).

Proof. If r(G/N) < r(G), this is trivial. Otherwise, Let s be an irredundant generating sequence of
length r(G/N) in G/N . By Gaschütz’s lemma, s has a lift to a generating sequence ŝ of G. Then
ŝ is irredundant; if a proper subseuqence generated G, its projection to G/N would be a proper
subsequence of s that generated G/N .

We end this section by discussing the Frattini subgroup Φ = Φ(G) for a finite group G. The
Frattini subgroup consists of all elements that are “non-generators” of G. The relation between
generating sequences of G and G/Φ is very simple, and we can use it in computations.

Recall that a maximal subgroup of G is a proper subgroup M ≤ G that is not properly contained
in any proper subgroup (so if M ≤ H ≤ G, either H = M or H = G). Then, we define:

Definition 1.28. The Frattini subgroup Φ = Φ(G) is the intersection
⋂
M of all maximal subgroups

of G.

Proposition 1.29. The Frattini subgroup is exactly the set of non-generators of G: elements g ∈ G
so that if X∪{g} generates G, then X generates G. Moreover, the Frattini subgroup is characteristic
(for any automorphism α of G, the image α[Φ] is equal to Φ), and therefore is normal in G.

Proof. First, let x be a non-generator. If M is a maximal subgroup, the set M does not generate
G, and by definition of x being a non-generator {x} ∪M does not generate G. By maximality,
〈M,x〉 = M and hence x ∈M . Since M was arbitrary, x ∈

⋂
M = Φ.

Conversely, let x ∈ Φ, so x ∈ M for every maximal subgroup M . Assume X ∪ {x} generates
G, but X does not. Since G is finite, the lattice of subgroups is finite, so 〈X〉 is contained in some
maximal subgroup M . This means X ⊆ M , and we also have x ∈ M because x ∈ Φ. Therefore
〈X,x〉 ⊆M , which is a contradiction. So if X ∪ {x} generates G then so must X, which proves x is
a non-generator.

Finally, let α be an automorphism of G and M ≤ G a maximal subgroup. Then the image α[M ]
is maximal because α−1 takes any subgroup between α[H] and G to a subgroup between H and G.
Therefore α permutes the set of maximal subgroups (as α−1 induces its inverse on this set), giving

α[Φ] = α
[⋂

M
]

=
⋂
α[M ] =

⋂
M = Φ.

Thus Φ is a characteristic subgroup and hence a normal subgroup.

Given these basic properties of the Frattini subgroup, we can prove:
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Proposition 1.30. Let G be a finite group and N � G be contained in the Frattini subgroup Φ.
Then for any s ∈ Γn(G/N), any lift ŝ of s to G is a generating sequence of G. Therefore, ϕk(G) =
|N |nϕk(G/N), r(G) = r(G/N), and r(G) = r(G/N).

Proof. Let (g1, . . . , gn) be such that (g1N, . . . , gkN) generates G/N . Any gN ∈ G/N can be written
as a product of the giN and their inverses, and therefore any g ∈ G can be written as a product of
the gi and their inverses along with some n ∈ N . This means that the set {g1, . . . , gk, n1, . . . , n`}
generates G, where the n1, . . . , n` are the elements of N . However, each ni is in Φ so is a non-
generator. Then we can thus remove n` and still have a generating set, then remove n`−1 from this
new set, and so on. Removing all of the elements ni in this way, we get that {g1, . . . , gk} generates
G.

Since there are |N |k lifts of s, this immediately implies that JG : G/NKk = |N |k, and hence

ϕk(G) = |N |nϕk(G/N).

Also, since every generating sequence of G/N lifts, in particular the generating sequences of length
r(G/N) lift, so r(G) ≤ r(G/N) (and the reverse inequality holds in general). If s is an irredundant
generating sequence in G, then consider the projection s in G/N . This is also irredundant, as if a
proper subsequence of s generates then its lift to a proper subsequence of s also generates, which is
a contradiction. This proves r(G) ≤ r(G/N), and the reverse inequality holds in general.

As an easy application of this, we can compute r and ϕn for a cyclic group of prime power order
Zpk . In particular:

Corollary 1.31. If p is a prime number and k ≥ 1, r(Zpk) = 1 and ϕn(Zpk) = (pn − 1)pn(k−1). In
particular, if we let x be a generator of Zpk , a sequence (g1, . . . , gn) generates if and only if some gi
is not a power of xp.

Proof. As a cyclic group, we know that the subgroups of Zpk are exactly those of the form 〈xd〉 for
divisors d of pk. Therefore, the subgroups are those of the form 〈xpi〉 for 0 ≤ i ≤ k. Since these
are nested subgroups, we can see that 〈xp〉 contains all proper subgroups, and hence is the unique
maximal subgroup. Therefore the Frattini subgroup Φ is 〈xp〉. Moreover, the quotient Zpk/Φ is
isomorphic to Zp.

By example 1.5, we know that every sequence in Zp that contains some non-identity element
generates, and that ϕn(Zp) = pn − 1. Applying the previous proposition gives that

ϕn(Zpk) = |〈xp〉|kϕn(Zp) = (pk−1)n(pn − 1),

and that every sequence in Zpk that is not contained in Φ generates. Finally, note that it is trivial that
r(Zp) = 1 (any generating sequence contains a one-element generating subsequence), so r(Zpk) = 1
as well.

2 Generating Sequences in Direct Products

If we understand the behavior of generating sequences for two groups G,H, we can ask what happens
for the direct product G×H. If s = (g1, . . . , gn) is a sequence in G and t = (h1, . . . , hn) is a sequence
in H, we can form a sequence

((g1, h1), . . . , (gn, hn))

in G×H, which we denote (s, t) (using the natural identification of (G×H)n with Gn ×Hn).
Since the coordinate projections G×H → G and G×H → H are surjective homomorphisms, by

the previous section we know that if (s, t) is a generating sequence of G×H then s is a generating
sequence of G and t is a generating sequence of H. Therefore, we can identify the generating
sequences of G×H with a subset of Γn(G)× Γn(H). Some easy properties are:

Proposition 2.1. If G and H are finite groups, max{r(G), r(H)} ≤ r(G × H) ≤ r(G) + r(H),
r(G×H) ≥ r(G) + r(H), and ϕn(G×H) ≤ ϕn(G) · ϕn(H).
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Proof. The statement about ϕn is immediate from the identification of Γn(G × H) as a subset of
Γn(G)×Γn(H). For r, note that since G,H are projections of G×H, we have r(G), r(H) ≤ r(G×H).
Moreover, if (g1, . . . , gn) is a length r(G) generating sequence of G and (h1, . . . , hm) is a length r(H)
generating sequence of H, then

((g1, 1), . . . , (gn, 1), (1, h1), . . . , (1, hm))

is a generating sequence of G×H, proving r(G×H) ≤ r(G) + r(H).
Finally, if (g1, . . . , gn) is a length r(G) irredundant generating sequence in G and (h1, . . . , hm) is

a length r(H) irredundant generating sequence in H, then

((g1, 1), . . . , (gn, 1), (1, h1), . . . , (1, hm))

is an irredundant generating sequence of G×H, as if we remove any element the projection of the
sequence to one of the coordinates does not generate. Thus r(G×H) ≥ r(G) + r(H).

2.1 Relatively Prime Sequences and Groups

We can ask when a given (s, t) ∈ Γn(G) × Γn(H) gives a generating sequence of G ×H. First, we
give a name to such sequences:

Definition 2.2. Two sequences s ∈ Γn(G) and t ∈ Γn(H) are said to be relatively prime if (s, t)
generates G×H.

Recall that if s = (s1, . . . , sn) is a generating sequence of G, we define πs : Fn → G as the
surjective homomorphism with πs(xi) = si. We can give an equivalent formulation that can be
easier to check, using the functions πs:

Proposition 2.3. Two sequences s ∈ Γn(G) and t ∈ Γn(H) are relatively prime if and only if for
every g ∈ G there is some u ∈ Fn with πs(u) = g and πt(u) = 1 and for every h ∈ H there is v ∈ Fn
with πt(v) = h and πs(v) = 1.

Proof. Note that π(s,t) is the product of the maps πs and πt. If s and t are relatively prime then
π(s,t) is surjective, so for any g ∈ G there is u so that

(πs(u), πt(u)) = π(s,t)(u) = (g, 1),

and similarly for any h ∈ H there is v with (πs(v), πt(v)) = (1, h).
Conversely, assume that s and t satisfy the specified condition. To prove (s, t) generates, it

suffices to show π(s,t) = πs × πt is surjective. To see this, fix (g, h) ∈ G × H, and pick u, v that
satisfy πs(u) = g, πt(u) = 1, πs(v) = 1, and πt(v) = h. Then,

π(s,t)(uv) = (πs(u), πt(u))(πs(v), πt(v)) = (g, 1)(1, h) = (g, h).

Further recall that we defined Ks to be kerπs. We can give an third equivalent formulation of
our definition in terms of the Ks. In fact, we can prove a more general lemma, which can be thought
of as the “Chinese remainder theorem for groups”:

Lemma 2.4. Let G,G1, G2 be groups, and h1 : G → G1 and h2 : G → G2 be surjective homomor-
phisms with kernels K1 and K2, respectively. Then h : G→ G1 ×G2 given by h(g) = (h1(g), h2(g))
has kernel K1 ∩K2, and h is surjective if and only if K1K2 = G.

Proof. It is clear that h(g) = (h1(g), h2(g)) = (1, 1) if and only if g ∈ K1 and g ∈ K2, so kerh =
K1 ∩ K2. Moreover, assume that h is surjective, and fix some x ∈ G. Then h(x) = (g1, g2) =
(1, g2)(g1, 1), and by surjectivity there are x1, x2 with h(x1) = (g1, 1) and h(x2) = (1, g2). This
means x1 ∈ K1, x2 ∈ K2, and we get h(x) = h(x1)h(x2) = h(x1x2). Therefore, h(x−1x1x2) = 1, so
y = x(x1x2)−1 ∈ K1 ∩K2, and thus

x = (yx1)x2 ∈ K1K2.
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Since x was arbitrary, K1K2 = G.
Conversely, assume K1K2 = G (which means K2K1 = G as well), and fix an element (a1, a2) ∈

G1 ×G2. By surjectivity of h1, h2, we have a1 = h1(b1) and a2 = h2(b2) for bi ∈ G. As G = K2K1,
we have b1 = k2k1 for ki ∈ Ki. Also, we have k−1

2 b2 = m1m2 for mi ∈ Ki. Then, consider g = k2m1.
Note that

h1(k2m1) = h1(k1k2) = h1(b1) = a1

because m1, k1 ∈ K1, and similarly

h2(k2m1) = h2(k2m1m2) = h2(k2k
−1
2 b2) = a2,

so h(g) = (a1, a2). As (a1, a2) was arbitrary, h is surjective.

Corollary 2.5. Two sequences s ∈ Γn(G) and t ∈ Γn(H) are relatively prime if and only if KsKt =
Fn.

Now, we consider a sufficient condition for all pairs of generating sequences (s, t) ∈ Γn(G)×Γn(H)
to be relatively prime:

Definition 2.6. We say two groups G and H are relatively prime if they have no nontrivial common
quotient groups (i.e. if G/N ∼= H/N ′ for N � G and N ′ �H, then G/N and H/N ′ are the trivial
group 1).

Proposition 2.7. If G and H are relatively prime groups, then any s ∈ Γn(G) and t ∈ Γn(H) are
relatively prime sequences.

Proof. Recall that we let Ks = kerπs and Kt = kerπt. Since πs is a surjective homomorphism,
it preserves normal subgroups, so πs[Kt] is normal in G. Let π : G → G/πs[Kt] be the canonical
projection. Then π ◦ πs takes Kt to zero by definition, so by the universal property of quotient
groups, it factors through Fn/Kt

∼= H.
This means that there is a surjective homomorphism π′ : H → G/πs[Kt], so G/πs[Kt] is a

quotient group of both G and H. Since G and H are relatively prime, this group must be trivial, so
πs[Kt] = G. Therefore, for any g ∈ G, there is u ∈ Kt with πs(u) = g, and moreover by definition
of Kt we have πt(u) = 1. By a parallel argument, for any h ∈ H there is v ∈ Fn with πs(v) = 1 and
πt(v) = h. Thus s and t are relatively prime by Proposition 2.3.

Corollary 2.8. If G and H are relatively prime groups, we have r(G × H) = max{r(G), r(H)},
r(G×H) = r(G) + r(H), and ϕn(G×H) = ϕn(G)ϕn(H).

Proof. Since every s ∈ Γn(G) and t ∈ Γn(H) are relatively prime, Γn(G×H) is in bijective correspon-
dence with Γn(G)×Γn(H), and hence ϕn(G×H) = ϕn(G)ϕn(H). Moreover, if n = max{r(G), r(H)}
we can find length n generating sequences of G and H and combine them to get a length n generat-
ing sequence of G ×H, proving r(G ×H) ≤ max{r(G), r(H)} (and the reverse inequality holds in
general).

To show r(G × H) = r(G) + r(H), it suffices to show that if n > r(G) + r(H) then a sequence
s of length n in G × H is necessarily redundant. To see this, note that there is a subsequence s1

of length at most r(G) such that it projection to G is a generating sequence. Similarly there is a
subsequence s2 of length at most r(H) with a projection that generates H. Then, let s1 ∪ s2 denote
the subsequence of s containing all coordinates in s1 or s2. This is a proper subsequence of s by
length considerations. Moreover, if we project to each coordinate, we get generating sequences of
G and H respectively, and since G and H are relatively prime the combination of these sequences
(which is s1 ∪ s2) generates. Hence s has a proper subsequence that generates, so is redundant.

The following proposition is the motivation for the terminology “relatively prime groups,” which
is in turn the motivation for the terminology “relatively prime sequences.” Also, as a corollary, we
can prove Equation 1, the formula for ϕn(Zm) that we stated earlier.

Proposition 2.9. If G and H are finite groups with |G| and |H| relatively prime integers, then G
and H are relatively prime groups.
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Proof. If Q is a common quotient group of G and H, then we know |Q| divides both |G| and |H|.
Since these numbers are relatively prime, we must have |Q| = 1, so the only common quotient of G
and H is the trivial group.

Corollary 2.10. Letting Zm be the cyclic group of order m = pa1
1 · · · p

ak

k (with the pi distinct primes
and the ai positive), we have r(Zm) = 1, r(Zm) = k, and

ϕn(Zm) = p
n(a1−1)
1 (pn1 − 1) · · · pn(ak−1)

k (pnk − 1).

In particular, a sequence (g1, . . . , gn) in Zm generates if and only if its projection to Zpai
i

generates
for each i.

Proof. We know that Zm ∼= Zpa1
1
× · · · × Zpak

k
. We then prove the result by induction on k. The

base case was established in Corollary 1.31, where we showed r(Zpi) = r(Zpi) = 1 and ϕn(Zpi) =
pn(i−1)(pn − 1). For the inductive step, the proposition implies Zpa1

1
× · · · × Z

p
ak−1
k−1

and Zpak
k

are
relatively prime, and the desired claims follow from Proposition 2.7.

2.2 Gaschütz’s Theorem and Cosocles

If G and H are relatively prime groups, the propositions of the previous section are sufficient to
determine much of the behavior of generating sequences of G × H. If not, we need some more
theoretical machinery. This is provided by another theorem of Gaschütz [Gas55]. We start with two
new definitions:

Definition 2.11. Let G be a finite group. A maximal normal subgroup of G is a proper subgroup
that is maximal with respect to being normal (i.e a group M � G so that if M ≤ M ′ � G then
M ′ = M or M ′ = G). Note that this is not the same as being M being both a maximal subgroup
and a normal subgroup.

One trivial property of maximal normal subgroups of finite groups is that if N �G then N ≤M
for a maximal normal subgroup M . We then define:

Definition 2.12. Let G be a finite group. Define N � G to be the intersection of all maximal
normal subgroups of G. Define the cosocle CoSoc(G) as the quotient group G/N .

We note that calling G/N the “cosocle” is not standard, and the subgroup N is sometimes itself
called the cosocle. The “socle” of a group, the subgroup generated by all minimal normal subgroups,
is well-studied in the group theory literature. The best “dual” construction to this is the quotient
by the intersection of all maximal normal subgroups, which is why we call this the cosocle. The
cosocle and socle turn out to share a number of important properties (for instance, the socle and
the cosocle are both always direct products of finite simple groups; we prove this for the cosocle in
Proposition 2.14).

We start our study of the cosocle with a lemma about the subgroup N used to define it. One
can think of this as the normal-subgroup analogue to the Frattini subgroup. It turns out to have its
own version of a “non-generator property”:

Lemma 2.13. Let G be a finite group and N the intersection of all maximal normal subgroups of
G. Then, if M �G satisfies MN = G we have M = G.

Proof. Suppose that M �G is a proper normal subgroup with MN = G. Then, M is contained in
some maximal normal subgroup M ′. By construction of N , we have N ≤M ′, and hence G = MN ≤
M ′. This contradicts the fact that M ′ is a proper subgroup; so we must have that M = G.

Note that the “non-generator property” for the Frattini subgroup can be expressed in the same
way: if H ≤ G satisfies HΦ = G, then H = G.

Proposition 2.14. If G is a finite group, CoSoc(G) is isomorphic to a direct product of finite simple
groups.
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Proof. Recursively define a sequence of maximal normal subgroups of G by taking Mi to be a
maximal normal subgroup so that M1 ∩ · · · ∩Mi−1 * Mi. Since G is finite, we eventually get a
sequence M1, . . . ,Mk so that M1∩· · ·∩Mk is contained in every maximal normal subgroup. We then
have M1 ∩ · · · ∩Mk is equal to the intersection N of all maximal normal subgroups, so CoSoc(G) is
G/(M1 ∩ · · · ∩Mk) by definition.

Now, we claim that for each i, G/(M1 ∩ · · · ∩Mi) ∼= G/M1 × · · · × G/Mi. We prove this by
induction on i; the base case of i = 1 is trivial. For the inductive step, note that M1∩· · ·∩Mi−1 *Mi

means that the product (M1 ∩ · · · ∩Mi−1)Mi is a normal subgroup properly containing Mi. Since
Mi is maximal normal, we have G = (M1 ∩ · · · ∩Mi−1)Mi. Then, apply Lemma 2.4 (the Chinese
Remainder Theorem for groups), using the canonical projections h1 : G → G/(M1 ∩ · · · ∩Mi−1)
and h2 : G → G/Mi. Since the product of the kernels (M1 ∩ · · · ∩ Mi−1)Mi is G, the lemma
implies that the product map h : G → G/(M1 ∩ · · · ∩Mi−1) × G/Mi is surjective, and moreover
kerh = M1∩· · ·∩Mi−1∩Mi. Thus, by the first isomorphism theorem and the inductive hypothesis,

G

M1 ∩ · · · ∩Mi

∼=
G

M1 ∩ · · · ∩Mi−1
× G

Mi

∼=
G

M1
× · · · × G

Mi
.

Thus, we have

CoSoc(G) =
G

M1 ∩ · · · ∩Mk

∼=
G

M1
× · · · × G

Mk
.

Since each Mi is maximal normal, each quotient group G/Mi must be simple, as if N/Mi � G/Mi

then Mi ≤ N �G means N = Mi or N = G. Thus we have proven CoSoc(G) is a direct product of
finite simple groups.

Proposition 2.15. If G,H are finite groups, CoSoc(G×H) ∼= CoSoc(G)× CoSoc(H).

The bulk of this proof comes from the following lemma abut maximal normal subgroups of direct
products:

Lemma 2.16. Let G1 and G2 be finite groups, and M ⊆ G1 × G2 a maximal normal subgroup.
Define M1 = {g : (g, 1) ∈ M} and M2 = {g : (1, g) ∈ M}. Then each Mi is either equal to Gi or a
maximal normal subgroup of Gi. Moreover M1 ×M2 ≤M .

Proof. Start by noting that Mi�Gi. If g, h ∈M1 then (g, 1) and (h, 1) are in M , so (g, 1)(h, 1)−1 =
(gh−1, 1) ∈M means gh−1 ∈M1, and thus M1 is a subgroup. Moreover, if g ∈M1 and α ∈ G1 then

(α, 1)(g, 1)(α, 1)−1 = (αgα−1, 1) ∈M

(because M � G) means αgα−1 ∈ M1. Thus M1 � G1, and similarly M2 � G2; this also implies
M1 ×M2 �G1 ×G2. Also, it is clear by construction that M1 ×M2 ≤M .

If M1 = G1, then we claim M = G1 ×M2 and that M2 is maximal normal in G2. We have
G1×M2 ⊆M by construction, and for the converse note that if (g, h) ∈M then G1×1 ⊆M implies
(1, h) = (g, h)(g−1, 1) ∈ M . Then, M2 6= G2 (because otherwise M = G1 × G2 is not maximal
normal). If M2 ≤ N � G then M = G1 ×M2 ≤ G1 ×N � G1 × G2, and maximal normality of M
implies that N is either M2 or G. Thus, if M1 = G1, M2 is maximal normal in G2. Similarly, if
M2 = G2, then M1 is maximal normal in G1.

This leaves the case where M1 and M2 are proper normal subgroups of G1 and G2, respectively.
Since M1 ×M2 ≤M , we have

M

M1 ×M2
�

G1 ×G2

M1 ×M2

∼=
G1

M1
× G2

M2
.

So, M/(M1 ×M2) corresponds to a normal subgroup M ′ of G1/M1 ×G2/M2. Using the canonical
isomorphism between (G1 ×G2)/(M1 ×M2) and G1/M1 ×G2/M1, we can compute

M ′ = {(gM1, hM2) : (g, h) ∈M}.
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By the third isomorphism theorem,

G1/M1 ×G2/M2

M ′
∼=

(G1 ×G2)/(M1 ×M2)
M/(M1 ×M2)

∼=
G

M
,

which we know is simple; hence M ′ is maximal normal.
Now, note that M ′ satisfies the following property: If (M1, gM2) ∈ M ′ then g ∈ M2 and if

(gM1,M2) ∈ M ′ then g ∈ M1. To see this, note that (M1, gM2) ∈ M ′ means (m1, gm2) ∈ M for
(m1,m2) ∈ M1 ×M2. Since (m1,m2) ∈ M as well, (1, g) = (m1, gm2)(m1,m2)−1 ∈ M implies
g ∈M1 by definition. An identical proof works if (gM1,M2) ∈M ′.

If we define the projections πi : M ′ → Gi/Mi, M ′ is contained in π1[M ′]×G2/M2 and G1/M1×
π2[M ′]. Moreover, containment is proper. To see this, assume that M ′ = π1[M ′] × G2/M2. Since
G2 6= M2, we can pick g /∈ M2, and then (M1, gM2) ∈ π1[M ′] × G2/M2 = M ′. By the previous
paragraph, this means g ∈M2, a contradiction. Thus we have a chain of inclusions

M ′ � π1[M ′]×G2/M2 �G1/M1 ×G2/M2;

since M ′ is maximal, we must have π1[M ′] = G1/M1. Similarly, we can prove π2[M ′] = G2/M2.
Then, define a map f : G/M1 → G/M2 by f(g) = h, where (g, h) ∈ M ′. Note that this is

well-defined; for any g ∈ G/M1, (g, h) ∈ M ′ for some h (by the fact that π1[M ′] = G1), and
this h is unique (if (g, h′) ∈ M ′, then (g, h′)(g, h)−1 = (1, h′h−1) ∈ M ′ forces h′ = h by the
fact proven two paragraphs ago). Furthermore, f(g1g2) = f(g1)f(g2), as if (g1, h1), (g2, h2) ∈ M ′,
then (g1g2, h1h2) ∈ M ′. So f is a homomorphism. We can define an analogous homomorphism
f ′ : G/M2 → G/M1 by f(h) = g, where (g, h) ∈M ′. It is clear that f and f ′ are inverses. Therefore,
f is an isomorphism between G/M1 and G/M2. If we let F : G1/M1 ×G2/M2 → (G1/M1)2 be the
isomorphism given by F (g, h) = (g, f−1(h)), we get F [M ′] = {(g, g) : g ∈ G1/M1}.

Then, we compute (G1/M1)2/F [M ′] ∼= G1/M1. Since F [M ′] is maximal normal, this quotient
must be simple, so G1/M1 (and hence G2/M2) must be simple. Therefore, M1 and M2 are maximal
normal subgroups of G1 and G2, respectively, proving the lemma. We remark that in this case,
G1/M1 must be cyclic of prime order, as the diagonal subgroup {(g, g) : g ∈ G} is normal in G×G
if and only if G is abelian.

Proof of Proposition 2.15. Let Ni be the intersection of all maximal normal subgroups of Gi, and
N be the intersection of all maximal normal subgroups of G1×G2. If M1 is maximal normal in G1,
then M1 ×G2 is maximal normal in G1 ×G2, and similarly for G1 ×M2 if M2 is maximal normal
in G2. Therefore,

N ≤
⋂
M1

(M1 ×G2) ∩
⋂
M2

(G1 ×M2) = (N1 ×G2) ∩ (G1 ×N2) = N1 ×N2.

Conversely, by Lemma 2.16, if M is any maximal normal subgroup then M1 ×M2 ≤M where each
Mi is either equal to Gi or maximal normal in Gi. Therefore,

N1 ×N2 ≤M1 ×M2 ≤M.

Since N is the intersection of all such M , we get N1 × N2 ≤ N , proving equality of these two
subgroups. Therefore:

CoSoc(G1 ×G2) =
G1 ×G2

N1 ×N2

∼=
G1

N1
× G2

N2
= CoSoc(G1)× CoSoc(G2).

Finally, we can prove the main theorem of this section, that two sequences are relatively prime
if and only if they are relatively prime when after we pass to cosocles:

Theorem 2.17 (Gaschütz). Let G and H be finite groups, and let s ∈ Γn(G) and t ∈ Γn(G) be
generating sequences. Let s and t be the projections of s and t to generating sequences of CoSoc(G)
and CoSoc(H). Then s and t are relatively prime if and only if s and t are relatively prime.
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Proof. If s and t are relatively prime, then (s, t) generates G × H and therefore (s, t) generates
CoSoc(G)× CoSoc(H) ∼= CoSoc(G×H), which is a quotient of G×H.

So, suppose s and t are relatively prime, so (s, t) generates CoSoc(G)×CoSoc(H) ∼= CoSoc(G×
H). In particular, we have a surjective homomorphism θ : Fn → CoSoc(G×H) taking (x1, . . . , xn)
to (s, t). Let θ1 : Fn → CoSoc(G) and θ2 : Fn → CoSoc(H) be the surjective homomorphisms taking
(x1, . . . , xn) to s and t, respectively; thus we have θ = (θ1, θ2). Let K1 = ker θ1 and K2 = ker θ2.
By Lemma 2.4, ker θ = K1 ∩K2 and K1K2 = Fn (as θ is surjective).

Similarly, let π : Fn → G×H be the homomorphism taking (x1, . . . , xn) to (s, t). Let π1 : Fn → G
and π2 : Fn → H be the coordinate projections, so π = (π1, π2), and let L1 = kerπ1 and L2 = kerπ2.
By Lemma 2.4, kerπ = L1 ∩L2. Moreover, if we can show L1L2 = Fn then that lemma implies that
π is surjective and hence s and t are relatively prime.

Now, for i = 1, 2, let Ni be the intersection of all maximal normal subgroups in Gi, so θi is
πi composed with the canonical projection p : Gi → Gi/Ni. We claim that πi[Ki] = Ni. To see
this, note that if x ∈ Ki, then θi(x) = p(πi(x)) = 1, which means πi(x) ∈ Ni by definition of the
projection p, and hence πi[Ki] ⊆ Ni. Conversely, if n ∈ N , then n = πi(y) for some x ∈ Fn by
surjectivity, and by definition we have

1 = p(n) = p(πi(y)) = θi(y),

so y ∈ Ki and hence Ni ⊆ πi[Ki].
Since we have established K1K2 = G, we have

N1π1[K2] = π1[K1]π1[K2] = π1[K1K2] = π1[Fn] = G1.

As K2 � Fn and π1 is a surjective homomorphism, π1[K2] �G1. Then, we can apply Lemma 2.13,
which gives π1[K2] = G1.

Next, consider the subgroup L1K2 ≤ Fn. If k1 ∈ K1 then there exists k2 ∈ K2 with π1(k1) =
π1(k2) (as we just showed π1[K2] = G1). This means k1k

−1
2 = `1 ∈ kerπ1 = L1, so k1 = `1k2 ∈ L1K2

and hence K1 ≤ L1K2. Since K2 ≤ L1K2 trivially, we have Fn = K1K2 ≤ L1K2, so L1K2 = Fn.
We can now re-apply the argument of the previous two paragraphs. Since L1K2 = G, we have

π2[L1]N1 = π2[L1]π2[K2] = π2[L1K2] = π2[Fn] = G2.

Lemma 2.13 gives π2[L1] = G2. Then, if k2 ∈ K2, there is `1 ∈ L1 with π2(`1) = π2(k2). This means
`−1
1 k2 = `2 ∈ L2, so k2 = `1`2 ∈ L1L2. Therefore K2 ≤ L1L2, and hence Fn = L1K2 ≤ L1L2. This

proves L1L2 = Fn, and hence that s and t are relatively prime.

Corollary 2.18. Let G and H be finite groups. We have

r(G×H) = max{r(G), r(H), r(CoSoc(G×H))}.

If n ≥ r(G×H), then

ϕn(G×H) = JG : CoSoc(G)KnJH : CoSoc(H)Kn · ϕn(CoSoc(G×H))

Proof. Since G, H, and CoSoc(G×H) are all quotient groups of G×H, it is clear that we have

r(G×H) ≥ m = max{r(G), r(H), r(CoSoc(G×H))}.

On the other hand, since m ≥ r(CoSoc(G × H)), then there is a generating sequence (s, t) of
CoSoc(G)×CoSoc(H) ∼= CoSoc(G×H). Moreover, since m ≥ r(G), Gaschütz’s Lemma (Corollary
1.21) implies that s has a lift s to a generating sequence of G. Similarly, since m ≥ r(H), t has a lift s
to a generating sequence of G. Then Theorem 2.17 implies (s, t) generates G×H, so r(G×H) ≤ m.

Now, suppose n ≥ r(G × H), and consider Γn(G × H). We can partition this set into subsets
Γ(s,t) consisting of all sequences (s, t) ∈ Γn(G × H) that project to a specific sequence (s, t) in
Γn(CoSoc(G×H)). By definition of the lifting index JG : CoSoc(G)Kn, there are this many sequences
s ∈ Γn(G) that project to s. Similarly, there are JH : CoSoc(H)Kn sequences in Γn(H) that project
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to t. Therefore, there are JG : CoSoc(G)KnJH : CoSoc(H)Kn pairs (s, t) ∈ Γn(G) × Γn(H) that
project onto (s, t). By Theorem 2.17, each of these sequences generates G × H, so this set of
sequences equals Γ(s,t). Therefore,

ϕn(G×H) =
∑
(s,t)

|Γ(s,t)| =
∑
(s,t)

JG : CoSoc(G)KnJH : CoSoc(H)Kn

= JG : CoSoc(G)KnJH : CoSoc(H)Kn · ϕn(CoSoc(G×H)).

We remark that two groups G and H are relatively prime if and only if CoSoc(G) and CoSoc(H)
are relatively prime. (Moreover, the two cosocles are relatively prime if and only if they share no
common simple group in their decomposition as a direct product of simple groups). This means
that if G and H are relatively prime, if s ∈ Γn(G) and t ∈ Γn(H) then (s, t) automatically generates
CoSoc(G×H), so the above results reduce to those of the previous section.

2.3 Direct Products of the Same Simple Group

Gaschütz’s Theorem 2.17 reduces the question of understanding the generating sequences of G×H
to that of understanding the generating sequences of G, of H, and of CoSoc(G×H). By Proposition
2.14, the latter group is a direct product of finite simple groups, so we can write

CoSoc(G×H) ∼= Sn1
1 × · · · × S

nk

k ,

where the Si are distinct finite simple groups. Moreover, if i 6= j (so Si and Sj are distinct simple
groups), Sni

i and S
nj

j are relatively prime groups. Therefore, the question of understanding gen-
erating sequences of CoSoc(G ×H) reduces to understanding generating sequences of Sn, a direct
product of some number of copies of a single finite simple group.

It turns out that there is much we can prove about such groups. In this section, we focus on
determining r(Sn) for finite simple groups n. First, we prove a more general result:

Proposition 2.19. Let G be any nontrivial finite group. If r(Gn) = m, then n ≤ hm(G), the
reduced Eulerian function ϕm(G)/|Aut(G)|.

Proof. If r(Gn) = m, there is a surjective homomorphism π : Fm → Gn; projecting coordinate-wise,
we get surjective homomorphisms πi : Fm → G for 1 ≤ i ≤ n. Let Ki denote kerπi. Then, the
kernels Ki are pairwise distinct. If not, then we would have Ki = Kj for i 6= j, which would imply
KiKj = Ki 6= Fm and hence (by the Chinese Remainder Theorem for Groups, Lemma 2.4) that the
product map (πi, πj) is not surjective. This would contradict the assumption that the original map
π is surjective.

So, there are at least n distinct kernels of surjective homomorphisms Fm → G. Now, any such
homomorphism is πs for some generating sequence s ∈ Γm(G). Moreover, by Proposition 1.13,
kerπs = kerπt if and only if s and t are equivalent under the action of Aut(G), so the number
of distinct kernels is bounded above by the number of orbits of this action. By Proposition 1.10,
Aut(G) acts freely, so there are at most ϕm(G)/|Aut(G)| = hm(G) distinct kernels. Therefore
n ≤ hm(G).

The main theorem of this section is that if S is a nonabelian simple group then this upper bound
is exact; we have r(Shn(S)) = n. First, though, we deal with the case of abelian simple groups; their
behavior turns out to be understandable through linear algebra.

Proposition 2.20. Letting Zkp be the direct product of k copies of a cyclic group of prime order Zp,
we have r(Zkp ) = r(Zkp ) = k.

Proof. Note that Zkp is a k-dimensional vector space over the finite field Fp, and generating sequences
of Zkp are exactly sequences that correspond to spanning sets of the vector space. Therefore, any
spanning sequence must be at least k elements long by dimensionality. Moreover, irredundant
sequences correspond exactly to minimal spanning sets, which are bases for the vector space; hence
every irredundant generating sequence must be of length k.
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We can now focus on nonabelian finite simple groups. The first step is the following lemma:

Lemma 2.21. Let S be a nonabelian finite simple group. Then, if N is a normal subgroup of Sk,
we have N = N1×· · ·×Nk where each Ni is either 1 or S. In particular, there are exactly k distinct
normal subgroups of Sk that have index |S|.
Proof. Let N � Sk. Define Ni = 1 if πi[N ] = 1, and Ni = S otherwise; we claim N = N1 × · · · ×Nk
for this list of Ni. We first show that N1× 1× · · ·× 1 ≤ N . If N1 = 1 then this is trivial, so suppose
N1 = S.

Since N1 = S, there must be n = (n1, . . . , nk) ∈ N with n1 6= 1. As S is a nonabelian finite
simple group, the center Z(S) is trivial, so there is an element s ∈ S that does not commute with
n1. Then, by normality of N , we have(

(s, 1, . . . , 1)−1(n1, . . . , nk)−1(s, 1 . . . , 1)
)

(n1, . . . , nk) = ([s, n1], 1, . . . , 1) ∈ N.

Since s and n1 do not commute, [s, n1] is nontrivial in S. Moreover, by simplicity of S, the normal
closure of the element [s, n1] is S, so every s′ ∈ S can be written as a product of conjugates of [s, n1]
and its inverse. By normality of N , (s′, 1, . . . , 1) ∈ N where s′ is any conjugate of [s, n1]. Since N is
a subgroup, (s′, 1, . . . , 1) ∈ N where s′ is any product of such conjugates or their inverses. Therefore
N1 × 1× · · · × 1 ≤ N , as desired.

An identical argument shows that 1× · · · × 1×Ni × 1× · · · × 1 ≤ N for each i. Therefore, the
product N1 × · · · × Nk of these subgroups is contained in N . On the other hand, it is clear that
N ≤ N1 × · · · × Nk. This proves equality, and hence that every N � Sk is of the desired form.
Moreover, such a normal subgroup N1×· · ·×Nk is of index |S| if and only if exactly one Ni is equal
to 1, with the other Nj equal to S. Since there are k choices of the coordinate i, there are k normal
subgroups of index N in Sn.

We can then prove the main result.

Theorem 2.22. Let S be a nonabelian simple group. Then r(Shn(S)) = n. More generally, if
hn−1(S) < k ≤ hn(S) then r(Sk) = n.

Proof. By Propositions 1.10 and 1.13, there are exactly m = hn(S) distinct kernels of maps πs :
Fn → S. Enumerate these kernels by K1, . . . ,Km. For each i ≤ m, define

Li = K1 ∩ · · · ∩Ki.

We want to show that Fn/Li ∼= Si. We will prove this by induction. The base case of i = 1 is trivial,
as Fn/L1 = Fn/K1

∼= S by definition.
Now, suppose that we know Fm/Li−1

∼= Si−1. Note that if Li−1 ≤ Kj , the subgroup Kj/Li−1

of Fm/Li−1 has index |S|:

[ Fm

Li−1
: Kj

Li−1
] =

[Fm : Li−1]
[Kj : Li−1]

= [Fm : Kj ] = |S|

Thus, the subgroups K1/Li−1, . . . ,Ki−1/Li−1 are i − 1 distinct normal subgroups of index |S| in
Fm/Li−1

∼= Si−1. By Lemma 2.21, these are all such subgroups of Fm/Li−1. Therefore, if Li−1 ≤ Ki,
Ki/Li−1 would equal some Kj/Li−1 with j < i, and hence Kj = Ki, which is a contradiction. So we
must have Li−1 * Ki. Then Li−1Ki is a normal subgroup of Fn that properly contains Ki, which
means Li−1Ki/Ki is a nontrivial normal subgroup of Fm/Ki

∼= S. Since S is simple, this means
Li−1Ki/Ki = Fm/Ki and in particular Li−1Ki = Fn.

Now we apply the Chinese Remainder Theorem for groups, Lemma 2.4. Let h1 : Fm →
Fm/Li−1

∼= Si−1 and h2 : Fm → Fm/Ki
∼= S be the canonical projections, with kernels Li−1

and Ki, respectively. Since we just showed Li−1Ki = Fn, the lemma gives that the product map
h : Fm → Si−1 × S = Si is surjective and has kernel Li−1 ∩ Ki = Li. By the first isomorphism
theorem, we get Fn/Li ∼= Si, as desired. This finishes the inductive step.

By induction, we get Fn/Lm ∼= Sm (where we defined m = hn(S)), and hence r(Shn(S)) ≤ m.
If k satisfies hn−1(S) < k ≤ hn(S), then Sk is a quotient of Shn(S), so r(Sk) ≤ r(Shn(S)) ≤ n. On
the other hand, if r(Sk) ≤ n− 1, then Proposition 2.19 would imply k ≤ hn−1(S), a contradiction.
Therefore we must have r(Sk) = n in such a situation, and in particular r(Shn(S)) = n.
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3 The Product Replacement Graph

Fix a finite group G and a length n. For any integers i 6= j between 1 and n, define a function
`+ij : Γn(G)→ Γn(G) by

`+ij(g1, . . . , gn) = (g1, . . . , gi−1, gjgi, gi+1, . . . , gn).

Thus, `+ij makes a “local substitution” (by left multiplication of g+1
j in the i-th spot) in a generating

sequence by left multiplication, replacing the i-th entry gi by gjgi. To see that the resulting sequence
still generates, note that it contains g1, . . . , gi−1, gi+1, . . . , gn and that we can get gi from it by
multiplying g−1

j and gjgi.
Moreover, note that `+ij is an invertible function; its inverse can be given by

`−ij(g1, . . . , gn) = (g1, . . . , gi−1, g
−1
j gi, gi+1, . . . , gn).

This is also called a local substitution (by left multiplication of g−1
j in the i-th spot, in this case).

Similarly, we can define functions r+
ij and r−ij that are also permutations of Γn(G) by using right

multiplication instead of left multiplication:

r±ij(g1, . . . , gn) = (g1, . . . , gi−1, gig
±1
j , gi+1, . . . , gn).

Collectively, we call the functions `±ij and r±ij the “basic elementary operations” on Γn(G). Note
that our notation `±ij and r±ij suppresses the group G. If we need to specify the group, we use the
notation `±ij,G and r±ij,G.

The product replacement algorithm can then be described as starting with a generating sequence
(g1, . . . , gn), applying some random sequence of basic elementary operations, and then returning the
first element of the final sequence (g′1, . . . , g

′
n). For this algorithm to work properly, it is important

that it is possible to get from any generating sequence to any other by this process. To formalize
this problem so we can study it, we define:

Definition 3.1. The n-th “product replacement graph” is a graph with Γn(G) as its set of vertices,
and with an edge between two vertices s, s′ if there is some basic elementary operation taking s to
s′.

Note that the inverse of a basic elementary operation is a basic elementary operation, so there a
basic elementary operation taking s to s′ if and only if there is one taking s′ to s. In general, note
that it is possible to get from s to s′ through a sequence of basic elementary operations if and only
if there is a path between them in this graph. Thus, the desired condition of being able to get from
any s to s′ is equivalent to the connectedness of the product replacement graph.

To think about this problem in a group-theoretic way, we will want to use an equivalent formu-
lation of the problem in terms of group actions. In particular, for a fixed group G and integer n, we
define:

Definition 3.2. Define the n-th group of “elementary operations” on G, denoted En(G), as the
subgroup of the symmetric group on Γn(G) generated by the basic elementary operations (so all
permutations that can be written as a finite composition of basic elementary operations). Elements
of this group are called elementary operations on G.

By definition, two generating sequences s and s′ are equvialent under a sequence of basic elemen-
tary operations if and only if there is an elementary operation taking s to s′. If we let En(G) act
on Γn(G) as permutations, this says that the product replacement graph is connected if and only
if En(G) acts transitively on Γn(G). So, it is sufficient to study this group action. In this vein, we
define:

Definition 3.3. Let O(G,En) be the set of orbits of Γn(G) under En(G), and let c(G,En) be the
number of orbits of Γn(G) under En(G).
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By definition, En(G) acts transitively if and only if c(G,En) = 1. Also, note that the orbits of
the action of En(G) are exactly equal to the components of the product replacement graph. Thus
O(G,En) and c(G,En) are equivalently the set and number of components of this graph, respectively.

We are most interested in finding conditions that guarantee c(G,En) = 1, but it also turns out
to be interesting to work with cases where c(G,En) > 1 as well. It is also useful to consider the
action of other subgroups of the symmetric group on Γn(G) besides En(G). The ones we will use
are:

Definition 3.4. Define the n-th group of “left operations” Ln(G) as the subgroup of S(Γn(G))
generated by the operations `+ij and `−ij . Define the n-th group of “right operations” Rn(G) as the
subgroup generated by r+

ij and r−ij .

In analogy to Definition 3.3, we define O(G,Ln) and O(G,Rn) as the set of orbits of Γn(G)
under the actions of Ln(G) and Rn(G), respectively, and we similarly define c(G,Ln) and c(G,Rn)
as the number of orbits. It is clear that any orbit under Ln(G) or Rn(G) is contained in an orbit
under En(G), and hence that c(G,Ln), c(G,Rn) ≤ c(G,En).

We remark that there are various other groups Un(G) ≤ S(Γn(G)) that are of interest, and have
been studied in the literature. We can add permutations of Γn(G) induced by some σ ∈ Sn:

(g1, . . . , gn) 7→ (gσ(1), . . . , gσ(n)).

We can also use “inversion operations”, induced by inversion of some particular coordinate:

(g1, . . . , gn) 7→ (g1, . . . , g
−1
i , . . . , gn).

For instance, we can take Un(G) to be generated by all left operations, right operations, and inversion
operations. If we let G be a free group Fn (note that all of the relevant definitions work just as well
for infinite groups), connectivity of Un(Fn) is the Andrews-Curtis conjecture from topology [AC65].
The “finitary Andrews-Curtis conjecture”, on connectivity of Un(G) when G is a finite group, has
also recieved attention [BLM05].

3.1 Basic Properties

First, note that left operations and right operations are “dual.” This allows us to show that the
number of orbits under left operations and under right operations are the same, and hence that we
only need to work with one (we usually use Ln):

Proposition 3.5. For any finite group G and any n, we have c(G,Ln) = c(G,Rn).

Proof. Recall that for any group G (with binary operation · ), we can define its “opposite group”
Gop, with the same underlying set as G, and with binary operation ∗ given by g∗h = h ·g. Moreover,
G and Gop are canonically isomorphic by the map g 7→ g−1.

The underlying sets of G and Gop are equal by definition; we claim moreover that Γn(G) and
Γn(Gop) are equal as sets as well. To see this, note that if (g1, . . . , gn) generates G, then by the
isomorphism above, (g−1

1 , . . . , g−1
n ) generatesGop. Moreover, since replacing an element by its inverse

in a sequence doesn’t change what subgroup it generates, we get that (g1, . . . , gn) is a generating
sequence of Gop. This means Γn(Gop) ⊆ Γn(G); the reverse inclusion can be proved in an identical
manner.

Then, we can compute

`±ij,G(g1, . . . , gn) = (g1, . . . , g
±1
j · gi, . . . , gn) = (g1, . . . , gi ∗ g±1

j , . . . , gn) = r±ij,Gop(g1, . . . , gn),

So, basic left operations for G are equal to the basic right operations for Gop. Thus, Ln(G) and
Rn(Gop) are equal as subsets of S(Γn(G)). Therefore, c(G,Ln) = c(Gop, Rn). Since G and Gop are
isomorphic, we get c(G,Ln) = c(G,Rn), as desired.

Now, we can relate the number of orbits for Ln or En on a group G to the number of orbits for
Ln or En on a homomorphic image of G:
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Proposition 3.6. Let G be a group and H a homomorphic image of G by a surjective homomorphism
h : G→ H, and let h : Γn(G)→ Γn(H) be the induced surjection defined in Definition 1.18. Then,
h carries orbits of H under Ln(H) or En(H) into orbits of G under Ln(G) or En(G), respectively,
so c(H,Ln) ≤ c(G,Ln) and c(H,En) ≤ c(G,En).

Proof. Using the fact that h is a homomorphism, we can check that h ◦ `±ij,G = `±ij,H ◦ h. Therefore,
if s, s′ ∈ Γn(G) are related by some `±ij,G, then h(s) and h(s′) are related by the corresponding `±ij,H .
By taking compositions of such elements, we get that if s and s′ are in the same orbit under Ln(G),
then h(s) and h(s′) are in the same orbit under Ln(H). So, h maps orbits under Ln(G) into orbits
under Ln(H). By surjectivity of h, each orbit of Ln(H) is mapped to, so c(H,Ln) ≤ c(G,Ln). An
identical argument works for En.

We can also compare the number of orbits for Ln or En on groups G and H to the number of
orbits on G×H, in the case that the orders |G| and |H| are coprime integers:

Proposition 3.7. If |G| and |H| are coprime, then c(G×H,Ln) = c(G,Ln) · c(H,Ln) and c(G×
H,En) = c(G,En) · c(H,En).

Proof. By Proposition 2.9, G and H are relatively prime groups, so Γn(G × H) can be naturally
identified with Γn(G) × Γn(H). We claim that the orbits under Ln(G × H) are the products
of orbits under Ln(G) and Ln(H) under this correspondence; this will establish c(G × H,Ln) =
c(G,Ln) · c(H,Ln).

First note that if two sequences (s, t) and (s′, t′) are equivalent under Ln(G × H), then there
is a sequence of elementary left operations taking (s, t) to (s′, t′); looking coordinate-wise, we get a
sequence of elementary left operations taking s to s′ and a sequence of left operations taking t to t′.
Therefore, the orbit of (s, t) is contained in the product of the orbit of s and the orbit of t.

For the converse, first suppose that `±ij,G takes s to s′, and fix t ∈ Γn(H). We claim that (s, t)
and (s′, t) are in the same orbit of Ln(G×H). To see this, note that since |G| and |H| are coprime,
there is some a with a|H| ≡ 1 (mod |G|). We can then compute

(`±ij,G×H)a|H|(s, t) =
(

(`±ij,G)a|H|(s), (`±ij,H)a|H|(t)
)
.

Now, note that (`±ij,G)|G| is the identity function in S(Γn(G)), as it takes (g1, . . . , gn) to

(g1, . . . , g
|G|
j gi, . . . , gn) = (g1, . . . , gi, . . . , gn)

because |gj | divides |G|. Therefore, (`±ij,H)a|H|(t) = t, and also (`±ij,G)a|H|(s) = `±ij,G(s) = s′ because
a|H| ≡ 1 (mod |G|). Thus `±ij,G×H(s, t) = (s′, t).

So, if s and s′ are related by a basic left operation, (s, t) and (s′, t) are in the same orbit of
Ln(G ×H). Since any left operation is a composition of basic left operations, we get that if s and
s′ are in the same orbit of Ln(G) then (s, t) and (s′, t) are in the same orbit of Ln(G ×H). By a
similar argument, we can see that if t, t′ are in the same orbit of Ln(H), then (s′, t) and (s′, t′) are
in the same orbit of Ln(G×H), and hence (s, t) and (s′, t′) are in the same orbit.

This proves that the orbit of (s, t) in Ln(G×H) is equal to the product of the orbits of s and t in
Ln(G) and Ln(H), respectively, which proves the desired equation c(G×H,Ln) = c(G,Ln)·c(H,Ln).
An identical argument shows that the corresponding equation holds for En.

3.2 Results of Dunwoody and Diaconis-Graham

An important first result concerning connectivity of a product replacement graph was due to Dun-
woody [Dun70]:

Theorem 3.8 (Dunwoody). If G is a finite solvable group and n > r(G), then c(G,En) = 1 (so the
product replacement graph is connected).
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Before proving this, recall that a “chief series” of a group G is a series of subgroups

1 = G0 < G1 < · · · < Gc = G,

where each Gi is a normal subgroup of G that is maximal (there is no N �G with Gi < N < Gi+1).
It is easy to see that any finite group has a chief series (by starting with 1 < G and then adding
normal subgroups until no more fit). We also need some lemmas.

Lemma 3.9. Let (a+mZ, b+mZ) be a pair of elements in Z/mZ (from now on, we will suppress
the coset mZ and write (a, b)). Then a sequence of basic elementary operations takes (a, b) to (d, 0),
where d is the GCD of a, b, and m.

Proof. Let d′ be the GCD of a and b, so d is the GCD of d′ and m. Note that a = a′d′ and
b = b′d′ for coprime integers a′, b′. By Dirichlet’s Theorem on primes in arithmetic progressions,
there are infinitely many primes of the form ka′ + b′, so in particular we can pick such a prime p
greater than m. By iterating the elementary operation (α, β) → (α, β ± α), we can get from (a, b)
to (a, ka+ b) = (a′d′, pd′). Since p is a prime greater than m, p and m are coprime, so p is invertible
modulo m. We can then use operations (α, β) → (α ± β, β) to add (1− a′)p−1 copies of pd′ to the
first entry a′d′, which gets our pair to (d′, pd′) (since we are working modulo m). We can then go
to (d′, 0) by some more elementary operations. Finally, note that since d is the GCD of d′ and m,
d = xd′ + ym for some x, y, so d ≡ xd′ (mod m). So, we can go from (d′, 0) to (d′, xd′) = (d′, d),
then to (d, d), and finally to (d, 0), as desired. We remark that it is convenient but not necessary to
invoke Dirichlet’s theorem in this proof. A more elementary, but longer, proof can be given using
the Euclidean algorithm.

Lemma 3.10. If n > 1, then c(Zm, Ln) = c(Zm, En) = 1 for a cyclic group Zm.

Proof. Note that since Zm is abelian, Ln and En are equal. For convenience, we will view Zm as
Z/mZ, so we can work directly with integers. Note that gcd(a1, . . . , an) must be coprime to m,
as otherwise all elements generated by (a1, . . . , an) would be multiples of gcd(d1,m). This means
gcd(a1, . . . , an,m) = 1.

So, let (a1, . . . , an) be a generating sequence of Zm, with n > 1. Let di denote the GCD of the
elements ai, . . . , an,m. Applying the argument of Lemma 3.9 to the last two entries of the sequence,
we get that (a1, . . . , an) is equivalent to (a1, . . . , an−2, dn−1, 0) by a sequence of basic elementary
operations. Iterating, we get that (a1, . . . , an) is equivalent to (a1, . . . , ai−1, di, 0, . . . , 0), and finally
to (d1, 0, . . . , 0) = (1, 0, . . . , 0). Thus any two sequences are equivalent to (1, 0, . . . , 0) and hence to
each other.

Lemma 3.11. Let 1 = G0 < G1 < · · · < Gc = G be a chief series of a solvable group G and
(m, g1, . . . , gn−1) be a generating sequence of G so that m is a nontrivial element of G1. Then, for
any g ∈ G, this sequence is equivalent to (gmg−1, g1, . . . , gn−1) under En(G).

Proof. First, note that since G is a solvable group and G1 is a minimal normal subgroup of G,
we know that G1 is abelian (see, for instance, [Rot95] Theorem 5.24). Since (m, g1, . . . , gn−1) is a
generating sequence of G, if we set H = 〈g1, . . . , gn−1〉 then 〈m,H〉 = G and hence 〈G1, H〉 = G;
since G1 is normal, this implies HG1 = G. Thus, any g ∈ G can be written as hm′ for h ∈ H and
m′ ∈M . Since G1 is abelian, we have

gmg−1 = hm′m(m′)−1h−1 = hmh−1.

Since h ∈ 〈g1, . . . , gn−1〉, we can use left operations to build h on the left side of the first entry
of (m, g1, . . . , gn−1), and h−1 on the right side; thus we get that this sequence is equivalent under
En(G) to

(hmh−1, g1, . . . , gm−1) = (gmg−1, g1, . . . , gm−1),

as desired.
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Proof of Theorem 3.8. We prove this theorem by induction on the length c of a chief series for G.
For the base case of c = 1, the chief series is 1 < G1, which means G1 is simple. The only solvable
finite simple groups are cyclic, and Lemma 3.10 shows that if n > r(Zm) = 1 then c(Zm, En) = 1.

So, assume that we know the desired statement holds for all groups with chief series of length
less than some c > 1, and let G have a chief series 1 < G1 < · · · < Gc = G of length c. Fix some
n > r(G), and fix some generating sequence (h1, . . . , hn−1) of G of length n− 1. We will show that
under En, every sequence in Γn(G) is equivalent to (1, h1, . . . , hn−1), which will prove c(G,En) = 1.

Start by noting that G/G1 has a chief series of length c−1 (namely 1 < G2/G1 < · · · < Gc/G1),
so the inductive hypothesis applies for it. Therefore, if (g1, . . . , gn) is any generating sequence of
G, (g1G1, . . . , gnG1) and (G1, h1G1, . . . , hn−1G1) are both generating sequences of G/G1, and by
induction these sequences are equivalent by an sequence of basic elementary operations on G/G1.
Considering the same sequence of basic elementary operations in G, we get that (g1, . . . , gn) is
equivalent to (m,h1m1, . . . , hn−1mn−1) for elements m,mi ∈ G1. Moreover, we can assume without
loss of generality that m 6= 1; otherwise, (h1m1, . . . , hn−1mn−1) generates G, so we can pick some
m 6= 1 and write it as a sequence of these elements and their inverses, and then use elementary
operations to build it in the leftmost position in our sequence.

Therefore, it suffices to show that any sequence s = (m,h1m1, . . . , hn−1mn−1) with m,mi ∈ G1

and m 6= 1 is equivalent to (1, h1, . . . , hn−1). To see this, first note that since G1 is the first
term in a chief series, it is a minimal normal subgroup. Therefore, G1 is generated by the set
{gmg−1 : g ∈ G} (as this set generates a normal subgroup contained in G1). So, we can write each
mi as a product of elements gmg−1 (and their inverses). For some m′ ∈ G1, let `(m′,m) denote
the shortest length of a product of elements (gmg−1)±1 that equals m′. Note that `(m′,m) =
`(m′, gmg−1), as conjugates of m are the same as conjugates of gmg−1. Then, given a generating
sequence s = (m,h1m1, . . . , hn−1mn−1), let `(s) denote `(m1,m)+· · ·+`(mn−1,m); this is a measure
of how far away our sequence is from the desired sequence (1, h1, . . . , hn−1).

We will prove that each such s is equivalent to (1, h1, . . . , hn−1) by induction on `(s). If `(s) = 0,
then s = (m,h1, . . . , hn−1); since (h1, . . . , hn−1) generates G, we can write m as a product of these
elements, and use elementary operations to build m−1 on the left of m in the first position of the
sequence. This proves s is equivalent to (1, h1, . . . , hn−1), giving the base case of this induction.

For the inductive step, assume we have some s with `(s) > 0. Then some mi is nonzero, and in
particular can be written as m′i(gmg

−1)±1 where `(m′i) = `(mi)−1. By Lemma 3.11, s is equivalent
to

(gmg−1, h1m1, . . . , hn−1mn−1)

and hence to
s′ = (gmg−1, h1m1, . . . , him

′
i, . . . , hn−1mn−1).

We have `(mj ,m) = `(mj , gmg
−1) by a comment above, and also

`(m′i, gmg
−1) = `(m′i,m) < `(mi,m).

These imply `(s′) < `(s), and by induction s′ (and hence s) is equivalent to (1, h1, . . . , hn−1). This
finishes the induction on `(s′), proving that all sequences in Γn(G) are equivalent under En(G).
Thus, we are also done with our induction on the length of the chief series of G, proving that
c(G,En) = 1 for n > r(G) whenever G is solvable.

This result leads to the following conjecture:

Conjecture 3.12 (Pak). If G is any finite group and n > r(G), then c(G,En) = 1.

The following special case of the conjecture is particularly important, and is more widely believed
to be true.

Conjecture 3.13 (Wiegold). If S is a finite simple group and n > 2, then c(S,En) = 1.

Note that this is simply the previous conjecture restricted to simple groups (using the fact that
r(S) = 2 for finite simple groups).
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There is not much progress towards proving these conjectures in general. We quote some results
from the literature in this direction. In particular, we have the following collection of partial results
(for alternating groups, projective special linear groups, and the Suzuki groups):

Theorem 3.14. The n-th product replacement graph is connected for:
(a) G = PSL(2, p) for p ≥ 5 prime, and n ≥ 3 (Gilman, [Gil77]).
(b) G = PSL(2, 2m) for m ≥ 2, and n ≥ 3 (Evans, [Eva93]).
(c) G = PSL(2, pm) for p ≥ 3 prime and m ≥ 2, and n ≥ 4 (Garion, [Gar08]).
(d) G = Sz(22m−1) for m ≥ 2, and n ≥ 3. (Evans, [Eva93]).
(e) G = Am for 6 ≤ m ≤ 11, and n ≥ 3 (David [Dav93], Cooperman and Pak [CP00]).

Note that none of these results or conjectures apply to the n = r(G) case, and in fact that
product replacement graph is in general not connected. It is easiest to see this for cyclic groups, for
if n = 1 there are no basic elementary operations (they all need sequences of length 2 to define), so
L1(G) and E1(G) are the trivial group, and c(Zm, E1) = ϕ(m). The following theorem of Diaconis
and Graham [DG99] extends this to compute c(A,En) for n = r(A) and A a finite abelian group.
Recall that for any finite abelian group A has an “invariant factor decomposition”, i.e. we have an
isomorphism of A with a direct product of cyclic groups

A ∼= Zm1 × · · · × Zmn

where mn > 1 and mi divides mi−1 for each i > 1.

Theorem 3.15 (Diaconis and Graham). Let A be a finite abelian group with invariant factor de-
composition Zm1×· · ·×Zmn . Then r(A) = n, and c(A,En) = c(A,Ln) = ϕ(mn) (where ϕ is Euler’s
phi function).

Proof. First note that Ln(A) = En(A) since A is abelian, so we only need to worry about left
operations. To see r(A) = n, note that as a product of n cyclic groups, r(A) ≤ n (as an application
of Proposition 2.1). On the other hand, if p is a prime dividing mn, then p divides each mi by
definition of the invariant factor decomposition. Then A has Znp as a quotient. By Proposition 2.20,
r(Znp ) = n, so r(A) ≥ n. This forces equality.

So, we are interested in length n generating sequences (a1, . . . , an) of Zm1 × · · · × Zmn
. Each ai

is an n-tuple (ai1, . . . , ain); thus we can express a generating sequence as a square matrix a11 · · · a1n

...
. . .

...
an1 · · · ann

 ,
where the i-th row represents the element ai of A, and the j-th column consists of elements of Zmj

.
Note that left operations consist of row operations on this matrix, in particular adding one row (or
its negative) to another.

First, note that if we reduce each row modulo mn, we get a n×n matrix with entries in Z/mnZ.
Since this is a commutative ring, there is a determinant function from Mn(Z/mnZ) to Z/mnZ which
is invariant under all row operations (so in particular the operations in Ln(A)). Now, if d generates
Z/mnZ, the matrix 

1 0 · · · 0

0
. . . 0

...
... 0 1 0
0 · · · 0 d


corresponds to a generating sequence of A, and moreover has determinant d. Since there are ϕ(mn)
elements of Z/mnZ that generate, these matrices give us ϕ(mn) distinct orbits of Γn(A) under
En(A). To prove that c(A,En) = ϕ(mn), we want to show that any generating sequence of A is
equivalent to one of these matrices.
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Let us start with a matrix  a11 · · · a1n

...
. . .

...
an1 · · · ann

 .
From Lemma 3.9, we know any pair (a, b) of elements in some Z/mZ is equivalent under elementary
operations to (d, 0), where d = gcd(a, b,m). Applying this to the first column of our matrix, we get

a1,1 a1,2 · · · a1,n

...
...

. . .
...

an−1,1 an−1,2 · · · an−1,n

an,1 an,2 · · · an,n

 ∼


a1,1 a1,2 · · · a1,n

...
...

. . .
...

dn−1,1 a′n−1,2 · · · a′n−1,n

0 a′n,2 · · · a′n,n

 ,
where dn−1,1 is the GCD of an−1,1, an,1, and m1. Iterating this process for each row of the first
column, and noting that gcd(a1,1, . . . , an,1,m1) = 1 (since the projection of our generating sequence
onto the first coordinate must generate) we get

a1,1 a1,2 · · · a1,n

...
...

. . .
...

an−1,1 an−1,2 · · · an−1,n

an,1 an,2 · · · an,n

 ∼


1 a′1,2 · · · a′1,n
0 a′2,2 · · · a′2,n
...

...
. . .

...
0 a′n,2 · · · a′n,n

 ,
for some set of entries a′i,j . Now, we can apply the same process to the bottom n − 1 columns to
reduce the second column to (a′1,2, 1, 0, . . . , 0), and this will not change the first column (since we’re
doing row operations on rows with their first entry zero). We get:


a1,1 a1,2 · · · a1,n

...
...

. . .
...

an−1,1 an−1,2 · · · an−1,n

an,1 an,2 · · · an,n

 ∼


1 a′1,2 a′1,3 · · · a′1,n
0 d′2,2 a′2,3 · · · a′2,n
0 0 a′3,3 · · · a′3,n
...

...
...

. . .
...

0 0 a′n,3 · · · a′n,n

 ,

where d′2,2 = gcd(a′2,2, . . . , a
′
n,2,m2). Then, note that since this is a generating sequence, d′2,2 must

equal 1 so that we can generate a sequence with 0 in the first column. We can continue to do this
for each other column, and eventually get:


a1,1 a1,2 · · · a1,n

...
...

. . .
...

an−1,1 an−1,2 · · · an−1,n

an,1 an,2 · · · an,n

 ∼


1 b1,2 · · · b1,n−1 b1,n
0 1 b2,3 · · · b2,n
...

. . . . . . . . .
...

0 · · · 0 1 bn−1,n

0 · · · 0 0 d

 .

Now, this matrix has determinant d after reducing modulo mn; since it represents a generating
sequence, d must be invertible in Z/mnZ and hence is coprime to mn. This means every bi,n is
congruent to a multiple of d modulo mn. Using elementary operations we can “clean up” the last
column by adding multiples of the bottom row to each other row, replacing all of the bi,n entries by
0’s. We can similarly do this for each other entry above the diagonal, giving

a1,1 a1,2 · · · a1,n

...
...

. . .
...

an−1,1 an−1,2 · · · an−1,n

an,1 an,2 · · · an,n

 ∼


1 0 · · · 0

0
. . . 0

...
... 0 1 0
0 · · · 0 d

 .
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3.3 General computations

We now turn to some more general techniques for understanding the orbits of the actions of En(G)
and Ln(G). We start by defining:

Definition 3.16. If (g1, . . . , gn) is a generating sequence, we say the i-th coordinate is free (or a
free spot) if (g1, . . . , gi−1, gi+1, . . . , gn) generates.

Note that we can always use left operations on (g1, . . . , gn) to replace gi with w · gi where w is
any word in the g1, . . . , gi−1, gi+1, . . . , gn. If the i-th spot is free, then w can be any element of G,
so we can use left operations to replace gi by any element g ∈ G. One consequence of this is that
we can permute sequences that have free spots:

Lemma 3.17. If (g1, . . . , gn) is redundant, and σ ∈ Sn is a permutation, then (g1, . . . , gn) is equiv-
alent to (gσ(1), . . . , gσ(n)) under Ln(G) (and hence also under En(G)).

Proof. By redundancy, there is some coordinate k so that (g1, . . . , gk−1, gk+1, . . . , gn) generates; we
say that such a coordinate k is a “free spot”. We can use left operations to replace gk by any g ∈ G.
In particular, we can build any gi in the k-th spot. Then the i-th coordinate is a free spot, and we
can build gk there. Thus we can permute two coordinates gi and gk as long as one of them is in a
free spot.

If i and j are two non-free coordinates, then pick a free coordinate k. We can build gi in the
k-th spot to make the i-th spot free. We can then build gj in the i-th spot to make the j-th spot
free, and then build gi in the j-th spot to make the k-th spot free again. Finally, we can build gk in
the k-th spot again; the result is that we have swapped gi and gj .

We have thus shown that we can swap any gi and gj in our sequence. This proves the de-
sired statement for transpositions σ, and by repeating the process (noting that a permutation of
a redundant sequence is redundant) we can get any composition of transpositions and hence any
permutation.

Now, we show that if n is “large enough” then the action is transitive. It turns out that anything
bigger than r(G) is “large enough”. The proof of this fact is very similar to the proof of Tarski’s
Irredundant Basis Theorem 1.17:

Theorem 3.18. If n > r(G), then Ln(G) (and hence En(G)) acts transitively on Γn(G).

Proof. By Lemma 3.17, we can permute the entries of any sequence of length n. We will do this
many times throughout the proof, (in particular we will often permute the coordinates so that the
first entry is a “free spot”).

Fix some irredundant generating sequence s = (s1, . . . , sm) (so we have m < n); we want to show
that an arbitrary generating sequence (g1, . . . , gn) is equivalent to (s1, . . . , sm, 1, . . . , 1). Following
the proof of Theorem 1.17, we let `(g) be the shortest length of a sequence of the elements si and
their inverses that multiplies together to give g. For a generating sequence t = (g1, . . . , gn), we again
define `(t) =

∑
`(gi), m(t) = max{`(gi)}, and f(t) = |{i : `(ti) = m(t)}|. Recall that we view `(t)

as a measure of “how far” t is from s, and we use m(t) and f(t) as tiebreakers for sequences such
that `(t) = `(t′).

Fix some t = (g1, . . . , gn), and consider the set of all sequences t′ which are equivalent to t under
Ln(G). Then, there is such a t′ = (g′1, . . . , g

′
n) that is minimal with respect to our measure, i.e.

(`(t),m(t), f(t)) is minimal with respect to the lexicographical order.
Now, we claim that m(t′) = 1. To prove this, first note that since we can permute the coordinates

of t′, we can assume without loss of generality that the first coordinate is free. Then, if m(t′) > 1,
some coordinate g′i (which we can assume without loss of generality is g′2) satisfies `(g′2) = m(t′).
Thus g′2 can be written as s±kg′′2 with `(g′′2 ) < `(g′2). We can then use left operations (and the fact
that the first spot is free) to get

t′ ∼ (sk, g′2, . . . , g
′
n) ∼ (sk, g′′2 , . . . , g

′
n)
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However, since `(g′′2 ) < `(g′2) and `(s±1
k ) = 1 < m(t′), we have `(t′′) < `(t′) or `(t′′) = `(t′) and

either m(t′′) < m(t′) or m(t′) = m(t′′) and f(t′′) < f(t′). This contradicts minimality of t′, so we
must have m(t′) = 1.

Now that we know m(t′) = 1, this implies `(g′i) = 1 for each i, and therefore each g′i is some
s±1
k . Since t′ generates, each sk must appear in this way as some g′i. We can then permute the

coordinates to get
t′ ∼ (s±1

1 , . . . , s±1
k , g′k+1, . . . , g

′
n).

Since the coordinates after the k-th are free, we can replace them all by 1’s. Then if we have s−1
i

in the i-th coordinate, we can put si in the free n-th coordinate, put si in the i-th coordinate, and
then put 1 back in the n-th coordinate. We thus get

t ∼ t′ ∼ (s1, . . . , sk, 1, . . . , 1).

On the other hand, when n = r(G) we generally don’t expect that En(G) or Ln(G) acts transi-
tively on Γn(G). We can thus try to prove lower bounds on c(G,En) and c(G,Ln). In particular,
consider the case where n = r(G) = 2. It turns out that commutators give an invariant of orbits:

Proposition 3.19 (Higman). Let G be a finite group with r(G) = 2. Then the function f : Γn(G)→
G mapping (g1, g2) to the commutator [g1, g2] is invariant under the action of L2(G). Moreover, the
conjugacy class of [g1, g2] is invariant under E2(G).

Proof. To see [g1, g2] is invariant under L2(G), we need to show that it is invariant under basic left
operations, i.e.

[g1, g2] = [g±1
2 g1, g2] = [g1, g

±1
1 g2].

This is a simple computation. For instance,

[g±1
2 g1, g2] = (g±1

2 g1)−1g−1
2 (g±1

2 g1)g2 = g−1
1 g∓1

2 g−1
2 g±1

2 g1g2 = g−1
1 g−1

2 g1g2 = [g1, g2].

The computation [g1, g2] = [g1, g
±1
1 g2] is similar. So, [g1, g2] is invariant under L2(G).

Showing that the conjugacy class of [g1, g2] is invariant under E2(G) requires showing invariance
under elementary right operations. For instance,

[g1g
±1
2 , g2] = (g1g

±1
2 )−1g−1

2 (g1g
±1
2 )g2 = g∓1

2 (g−1
1 g−1

2 g1g2)g±1
2 = g[g1, g2]g−1,

so these are indeed conjugate. A similar computation shows [g1, g2] and [g1, g2g
±1
1 ] are conjugate.

A result of Guralnick and Pak [GP03] proves that there is no corresponding invariant for En(G)
if n ≥ 3. In particular, there is no word in the elements g1, . . . , gn and their inverses that is invariant
under left operations on the sequence (g1, . . . , gn).

We can apply Higman’s result to give a more explicit lower bound for c(G,L2):

Proposition 3.20. Let G be a nonabelian finite group with r(G) = 2. Let (g, h) be a generating
sequence of G, and let p be the smallest prime dividing |g|. Then c2(G,L2) ≥ p− 1.

Proof. Let m = |g|. Since p is the smallest prime dividing m, m and i are coprime for 1 ≤ i ≤ p− 1,
and hence (gi, h) generates G for 1 ≤ i ≤ p − 1 (as some power of gi equals g). We claim that the
sequences (gi, h) are each in different orbits of Ln(G). Since there are p− 1 such sequences, this will
imply there are at least p− 1 orbits.

So, fix i, j with 1 ≤ i < j ≤ p − 1. To show (gi, h) and (gj , h) are in different orbits, it suffices
to show their commutator invariants [gi, h] and [gj , h] are different. To see this, note that if we set
` = j − i, we have

[gj , h] = g−i[g`, h]gi[gi, h]

(this follows from a standard commutator identity that is easy to verify). Now, if [gj , h] = [gi, h], we
would have g−i[g`, h]gi = 1 and hence [g`, h] = 1. This would imply that g` and h commute; since `
is coprime to |g|, g is a power of g`, and we get that g and h commute. Then G = 〈g, h〉 is abelian,
which is a contradiction. Thus we must have [gi, h] 6= [gj , h], as desired.
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We can apply this result to the case of finite simple groups. To do so, we need the following
theorem, the “3/2 generation theorem.” Its proof uses the classification theorem of finite simple
groups; see [GK00].

Theorem 3.21. Let S be a nonabelian finite simple group, and g ∈ S a non-identity element. Then
there is h ∈ S with 〈g, h〉 = S.

Corollary 3.22. Let S be a nonabelian finite simple group; then c(S,L2) ≥ 4 (in particular L2(S)
does not act transitively on Γ2(S)).

Proof. By Burnside’s paqb theorem (see, for instance, [DF04] chapter 19.2), there are at least three
distinct primes dividing the order |S|. Let p be the largest such prime; then we must have p ≥ 5.
By Cauchy’s Theorem, S has an element g of order p. By the 3/2 generation theorem, there is an
element h such that (g, h) generates S. Then, by Proposition 3.20, c(S,L2) ≥ p− 1 ≥ 4.

While Proposition 3.22 is useful theoretically (in that it proves c(S,L2) > 1), it is generally a
poor lower bound on c(S,L2). For instance, c(A5, L2) = 44, and c(S,L2) is even higher for other
small nonabelian finite simple groups that we tested. Higman’s result Proposition 3.19 is much
better - for A5 it gives a sharp lower bound of c(A5, L2) ≥ 44 (though it does not give a sharp lower
bound in all cases). Of course, there is not an obvious way to apply Proposition 3.19 to get a good
lower bound without using a computer to calculate commutator invariants.

4 Homogeneous Covers

Let G be a finite group, and n ≥ r(G). Recall that for a generating sequence s = (g1, . . . , gn) in
Γn(G), we define πs : Fn → G as the surjective homomorphism taking the free basis x1, . . . , xn to
g1, . . . , gn, and let Ks = kerπs.

Definition 4.1. We define K =
⋂
Ks, the intersection of all of the kernels Ks for s ∈ Γn(G). This

is a normal subgroup of Fn. We define the homogeneous cover of rank n of G as Fn/K, and denote
it by H(n,G).

We let xi denote the image of xi in H(n,G). Since x1, . . . , xn generate the free group Fn, the xi
generate H(n,G). Also, for each generating sequence s, we have K ⊆ Ks by construction, so by the
universal mapping property for quotient groups πs factors through H(n,G). This gives a surjective
homomorphism πs : H(n,G)→ G. If s = (g1, . . . , gn), then πs(xi) = gi by definition.

4.1 Homogeneous Groups

We start by defining two special types of subgroups, which were originally defined by Neumann and
Neumann in [NN51]:

Definition 4.2. Let G be a group. We say a normal subgroup H � G is hypercharacteristic if,
given any N � G with G/H ∼= G/N , we have H ≤ N . We say a normal subgroup U � G is
ultracharacteristic if, given N �G with G/U ∼= G/N , we have U ≥ N .

Some basic properties of ultracharacteristic and hypercharacteristic subgroups are summarized
in the next few propositions.

Proposition 4.3. If U is ultracharacteristic in G, then G/U ∼= G/N in fact implies U = N (i.e.
U is the only normal subgroup of G with the quotient G/U).

Proof. Let U satisfy this property. If G/U ∼= G/N , then N ≤ U because U is ultracharacteristic.
Assume that we in fact have N < U . Now, we know there is an isomorphism h : G/N → G/U . By
our assumption, U/N is a nontrivial subgroup of G/N , so h[U/N ] is a nontrivial subgroup of G/U .
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By the correspondence theorem, there is Ũ > U with h[U/N ] = Ũ/U , and Ũ � G. Then, by the
third isomorphism theorem and our isomorphism h, we have

G/Ũ ∼=
G/U

Ũ/U
=
h[G/N ]
h[U/N ]

∼=
G/N

U/N
∼= G/U.

Since Ũ > U , this contradicts our hypothesis. Therefore, our assumption must be false; it must be
true that if G/N ∼= G/U then U = N .

Proposition 4.4. Ultracharacteristic implies hypercharacteristic, and hypercharacteristic implies
characteristic.

Proof. By Proposition 4.3, ultracharacteristic implies hypercharacteristic. If H ≤ G is hypercharac-
teristic, let α be an automorphism of G. The image α[H] is a normal subgroup of G, and α induces
an isomorphism G/H ∼= G/α[H]. Since H is hypercharacteristic, H ≤ α[H]. Applying the same
argument to α−1, we get H ≤ α−1[H], and applying α gives α[H] ≤ H and therefore equality. This
means H is invariant under all automorphisms, so is a characteristic subgroup.

Proposition 4.5. If H is of finite index in G, H is hypercharacteristic if and only if it is ultra-
characteristic.

Proof. By Proposition 4.4, we just need to prove that if H is hypercharacteristic and of finite index
in G, then H is ultracharacteristic. This follows from computing the index; if G/N ∼= G/H, we
know H ≤ N by hypothesis, and also [G : N ] = [G : H] because these are the orders of G/N and
G/H. Then, we have [G : H] = [G : N ][N : H], which implies [N : H] = 1 and hence H = N .

The most important example of an ultracharacteristic subgroup is the group K we used to define
H(n,G):

Proposition 4.6. Let G be a finite group and n an integer, and as before define K =
⋂
Ks, the

intersection of all kernels Ks for s ∈ Γn(G). Then K is ultracharacteristic in the free group Fn.

Proof. We need to show that if L � Fn satisfies Fn/L ∼= Fn/K, then L ⊆ K. So, suppose we have
such an L. Let p : Fn → Fn/L be the canonical projection, and let h : Fn/L → Fn/K be an
isomorphism. For each s ∈ Γn(G), consider the homomorphism

π̃s = πs ◦ h ◦ p,

where πs : Fn/K → G is the homomorphism taking (x1, . . . , xn) to s. Each π̃s is a surjective
homomorphism Fn → G, so equals some πs′ : Fn → G for s′ ∈ Γn(G). We can thus define a map
σ : Γn(G)→ Γn(G) so that π̃s = πσ(s).

Now, suppose σ(s) = σ(t). This means π̃s = π̃t, so

πs ◦ h ◦ p = πt ◦ h ◦ p.

Since p and h are surjective, this implies πs = πt, and hence s = t. So, σ is injective; since Γn(G) is
a finite set, it is also surjective, and hence is a permutation.

Further note that for each s, we have

L = ker p ⊆ ker π̃s = Kσ(s).

Therefore, taking intersections and using the fact that σ is surjective,

L ⊆
⋂
Kσ(s) =

⋂
Ks = K.

This proves K is ultracharacteristic, as desired.

We can now give a number of equivalent definitions for a “‘homogeneous group”’, an idea first
introduced by Gaschütz in [Gas55].

32



Definition 4.7. Let H be a finite group with r(H) ≤ n. We say H is “homogeneous of rank n” if
any of the following equivalent properties hold:
1) For any (and hence all) s ∈ Γn(G), the kernel Ks = kerπs is ultracharacteristic.
2) The homogeneous cover H(n,H) is isomorphic to H.
3) The reduced Eulerian function hn(H) (see Definition 1.11) has value 1.
4) We have |Aut(H)| = |Γn(H)|.

Proof of equivalence. We start by proving (1) and (2) are equivalent. By definitionH(n,H) = Fn/K,
where K is the intersection of all kernels Ks for s ∈ Γn(G). If one Ks is ultracharacteristic, then
every other Kt equals Ks, so K = Ks and hence H(n,H) = Fn/K = Fn/Ks

∼= H. Conversely,
if H(n,H) ∼= H, then K is ultracharacteristic. Since Fn/K ∼= H ∼= Fn/Ks for each s, we have
K = Ks, and hence Ks is ultracharacteristic.

Next, we prove (1) and (3) are equivalent. If any Ks is ultracharacteristic, it is equal to all
of the other Kt. By Proposition 1.13, this means all of the elements of Γn(H) are in the same
orbit under the action of Aut(H). By Proposition 1.10, the automorphism group acts freely, and
hn(H) = |Γn(H)|/|Aut(H)| is the number of orbits, so must equal 1. Conversely, if hn(H) = 1, we
can run this argument backwards; there is only one orbit under Aut(H), which implies all of the
kernels Ks are equal, and hence that their common value is ultracharacteristic.

Finally, it is trivial that (3) and (4) are equivalent, as hn(H) = |Γn(H)|/|Aut(H)| by definition.

An immediate consequence of this definition is:

Proposition 4.8. If H is a homogeneous group of rank n, then any two elements s, t ∈ Γn(H) are
equivalent under the action of Aut(H).

Proof. Since the action of the automorphism is free, we know hn(H) = 1 is the number of orbits
under Aut(H), so there must be an automorphism α with α · s = t.

If we fix s ∈ Γn(H) for a homogeneous group H, then the automorphisms of H are in one-to-one
correspondence with Γn(H) by associating t ∈ Γn(H) with the automorphism taking s to t. This
is analogous to the way automorphisms of a vector space are determined by taking one basis to
another.

We can prove that the “rank n” in the definition of a homogeneous group in fact corresponds to
the minimal length of a generating sequence r(H):

Proposition 4.9. If H is nontrivial and homogeneous of rank n, r(H) = n.

Proof. Suppose r(H) < n. Then there is a generating sequence h1, . . . , hn−1 of length n− 1. Since
H is nontrivial, there is a non-identity h ∈ H. Then, (h1, . . . , hn−1, 1) and (h1, . . . , hn−1, h) are
elements of Γn(H). By the previous proposition, these two generating sequences are equivalent
under Aut(H), but looking at the last entry this means there is an automorphism α taking 1 to h.
This is a contradiction, so we must have r(H) = n.

We end this section with some propositions about homomorphisms out of homogeneous groups.
The first is due to Gaschütz [Gas55].

Proposition 4.10. Let H be homogeneous of rank n, and let M,N �H. If α : H/M → H/N is an
isomorphism, there is β ∈ Aut(H) with α(hM) = β(h)M .

Proof. Let s = (s1, . . . , sn) be a length n generating sequence of H. This projects to a generating
sequence s of H/M , which α carries to a generating sequence t of H/N . By Gaschütz’s Lemma
1.21, t lifts to a generating sequence t = (t1, . . . , tn) of H. By Proposition 4.8 above, there is an
automorphism β ∈ Aut(H) taking s to t. This means β(si) = ti, and therefore α(siM) = tiN =
β(si)M by definition. Since the si generate H, we get α(hM) = β(h)M for each h ∈ H.

Proposition 4.11. Let H a homogeneous group of rank n, and G a finite group. If ψ : H → G is
a surjective homomorphism, then for any s ∈ Γn(G) there is a surjective homomorphism Ψs : H →
H(n,G) with πs ◦Ψs = ψ.
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Proof. Let π : Fn → Fn/K = H(n,G) be the canonical projection. By Gaschutz’s lemma, any
t ∈ Γn(G) lifts through ψ to a generating sequence t̂ of H. Let γt : Fn → H be the surjective
homomorphism taking the free basis (x1, . . . , xn) to t̂. Then we have

ψ ◦ γt = πt = πt ◦ π

because these maps each take xi to ti. Note that H ∼= Fn/ ker γt, so by homogeneity ker γt = L is
ultracharacteristic and thus independent of t. Note that

L = ker γt ≤ kerψ ◦ γt = kerπt = Kt,

and hence L ≤
⋂
Kt = K. Therefore, π : Fn → H(n,G) factors through H by a homomorphism

Ψs : H → H(n,G) so that Ψs ◦ γs = π (note Ψs is surjective because π is). Then, we have

πs ◦Ψs ◦ γs = πs ◦ π = ψ ◦ γs.

Since γs is surjective, πs ◦Ψs = ψ, as desired.

4.2 Homogeneous Covers and Subdirect Products

Combining Proposition 4.6 in the previous definition with the definition of homogeneous groups and
homogeneous covers, we get:

Proposition 4.12. The homogeneous cover H(n,G) is a homogeneous group of rank n.

The results of the previous section can therefore be used to study homogeneous covers. For
instance, Proposition 4.11 implies that if H is a homogeneous group and G is a quotient of H, then
H(n,G) is a quotient of H.

Another way to study homogeneous covers is using the properties of “subdirect products”:

Definition 4.13. Let {Gi : i ∈ I} be a set of groups. A group G is called a subdirect product of the
Gi if there is an embedding h : G →

∏
Gi, so that the projection πi[h[G]] onto the i-th coordinate

equals all of Gi.

Proposition 4.14. The homogeneous cover H(n,G) is a subdirect product of hn(G) copies of G.

Proof. By definition, there are hn(G) orbits of Γn(G) under the action of Aut(G), and by Proposition
1.13, Ks = Kt if and only if s and t are in the same orbit under Aut(G). Therefore, if we let
k = hn(G), we can pick k sequences s1, . . . , sk so that the Ksi

are all distinct, and moreover any
kernel Ks equals some Ksi .

Then, define a homomorphism h : Fn → Gk as the product of the maps πsi , so x ∈ Fn maps
to (πs1(x), . . . , πsk

(x)). Note that h(x) = 1 if and only if πsi
(x) = 1 for each x, if and only if

x ∈
⋂
Ksi

= K. So, h factors through to an injective homomorphism h′ : H(n,G) → Gk (which is
the product of the maps πsi

: H(n,G)→ G). Moreover, this map is surjective onto each coordinate,
as projecting onto the i-th coordinate of G gives the surjective map πsi

.

A subdirect product of a number of copies of the same group G inherits many of the properties
of G. Applying our previous proposition, for instance, we get the following list of facts about
homogeneous covers.

Theorem 4.15. Let G be a finite group and H(n,G) the n-th homogeneous cover. Then:
1) H(n,G) is a finite group, with order at most |G|hn(G).
2) H(n,G) is abelian if and only if G is.
3) H(n,G) is nilpotent if and only if G is, and if they are their nilpotency classes are equal.
4) H(n,G) is solvable if and only if G is, and if they are their derived lengths are equal.
5) A simple group S appears in the Jordan-Holder decomposition of H(n,G) if and only if it appears
in the decomposition of G.
6) The exponent exp(G) is equal to exp(H(n,G)).
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It is straightforward to prove that each of these holds, and in fact that a more general version
of each statement holds for subdirect products in general. In fact, one can prove a general result in
universal algebra describing how subdirect products inherit properties; see [Lyn59].

Another consequence of Proposition 4.14 is that we can compute the order of the elements
xi ∈ H(n,G) (recall that (x1, . . . , xn) is the projection of the free basis (x1, . . . , xn) of Fn):

Proposition 4.16. If n > r(G), |xi| = exp(G). If n = r(G), then

|xi| = lcm{|g| : g is in a generating sequence in Γn(G)}.

Proof. We start by proving that the equality

|xi| = lcm{|g| : g is in a generating sequence in Γn(G)}

actually holds for any n. We know G is isomorphic to a subgroup of Gk, and in particular that xi
corresponds to a k-tuple of elements in generating sequences of G. Therefore |xi| divides the LCM
in question. On the other hand, if g appears in any generating sequence s, then a permutation s′ of
this generating sequence has g in the i-th spot, and πs′ takes xi to g. Thus |g| divides |xi|; since this
holds for every g in a sequence in Γn(G), the LCM of the |g| divides |xi| and hence equality holds.

If n > r(G), then every element g ∈ G appears in some length n generating sequence, so we have
actually proven

|xi| = lcm{|g| : g ∈ G},
which equals exp(G) by definition.

We call the value

|xi| = lcm{|g| : g is in a generating sequence in Γn(G)}

the “generating exponent” gexp(G), and note that gexp(G) always divides exp(G). It is often the case
that gexp(G) = exp(G), but there are examples where equality does not hold. The smallest group
for which gexp(G) 6= exp(G) is G = (Z3 × Z3) o Q8 (with the semidirect product corresponding
to the embedding of Q8 in GL2(F3)). This group has order 72, and its exponent is 12 while its
generating exponent is 4.

We end this section with one more result, relating homogeneous covers of different ranks for the
same group:

Proposition 4.17. If G is a finite group and m > n ≥ r(G), there is a natural surjective group
homomorphism h : H(m,G)→ H(n,G).

Proof. Let f : Fn → Fm be given by f(xi) = xi, and g : Fm → Fn be given by g(xi) = xi for i ≤ n
and g(xi) = 1 for i > n (both maps extend to be homomorphisms by the universal property for free
groups). Note that g ◦ f is the identity on Fn. Also, given s ∈ Γn(G), let s′ = f(s) = (s, 1, . . . , 1)
in Γm(G), and note that πs′ = πs ◦ g. Let Ks = kerπs for s ∈ Γm(G), Ls = kerπs for s ∈ Γn(G),
K =

⋂
s∈Γm

Ks, K ′ =
⋂
s∈Γn

Ks′ , and L =
⋂
s∈Γn

Ls. Note Fm/K = H(m,G), Fn/L = H(n,G),
and K ≤ K ′.

Now, we claim f [Fn] ·K ′ = Fm and f [Fn] ∩K ′ = f [L]. To prove the first equality, note that for
i ≤ n, xi ∈ f [Fn], and for i > n, πs′(xi) = 1 because s′ = (s1, . . . , sn, 1, . . . , 1), so xi ∈ K ′s for each s
and hence xi ∈ K ′. Thus every xi is in either f [Fn] or K ′, so Fm = 〈x1, . . . , xm〉 ⊆ f [Fn] ·K ′. For
the second equality f [Fn] ∩K ′ = f [L], note that since πs′ ◦ f = πs ◦ g ◦ f = πs,

f [Fn] ∩Ks′ = {f(x) : x ∈ Fn, πs′(f(x)) = 1} = {f(x) : x ∈ Fn, πs(x) = 1} = f [L].

Finally, note that since K ≤ K ′, there is a canonical projection Fm/K → Fm/K
′, and then by the

second isomorphism theorem there is an isomorphism

Fm
K ′

=
f [Fn] ·K ′

K ′
∼=

f [Fn]
f [Fn] ∩K ′

=
f [Fn]
f [L]

∼=
Fn
L

= H(n,G)

These maps compose to give our surjective homomorphism H(m,G)→ H(n,G), which is explicitly
given by letting h(xK) equal x′L for some x′ ∈ Fn such that f(x′) ∈ xK ′.

35



In general, there is not a natural homomorphism in the other direction, H(n,G) → H(m,G).
However, such homomorphisms do exist in special cases, and understanding exactly when they do
exist is an open question.

4.3 Computations of Homogeneous Covers

To understand a new concept, it is always useful to make computations. For our case, we can
compute homogeneous covers of groups in some special cases. Since H(n,G) is a quotient of Fn,
we can always give a presentation for H(n,G) with n variables. Our approach to doing this is
usually to start by finding relations that must hold in H(n,G) (for instance, if exp(G) = k, then our
knowledge that exp(H(n,G)) = k as well means the relations xki must hold). Once we have some
set of relations normally generating some K0 � Fn with K0 ≤ K, we try to prove that K0 = K and
hence Fn/K0 = H(n,G) by showing that if x /∈ K0 there is a surjective homomorphism π : Fn → G
with π(x) 6= 1, which means x /∈ K by definition.

The easiest case is that of abelian groups. Recall that if A is a finite abelian group, then A ∼=
Zm1 × · · · × Zmn

where mn > 1 and mi divides mi−1 for each i > 1. Moreover, r(A) = n. Then:

Proposition 4.18. If A is a finite abelian group as above, H(k,A) ∼= Zkm1
for each k ≥ n.

Proof. By definition, H(k,A) ∼= Fk/K, where K is the kernel of all of the surjective maps πs : Fk →
A. Since A is abelian, the kernels Ks each contain the commutator subgroup F ′n, so K contains F ′n.
Moreover, since A has exponent m1, each kernel Ks contains xm1

i for each element of the free basis
xi, and hence so does K. Therefore, K contains K0 = 〈〈F ′n, x

m1
1 , . . . , xm1

k 〉〉 (the normal closure of
these elements), so Fn/K is a quotient of Fn/K0

∼= Zkm1
.

To seeK0 = K, first note that if (a1, . . . , ak) ∈ Zkm1
is nonzero then there is a surjective π : Zkm1

→
A so that π(a1, . . . , ak) is nonzero (if ai is nonzero, take the map Zkm1

→ Zm1 × · · · ×Zmn
mapping

the i-th coordinate to the first, and map the other coordinates of Zkm1
onto to the coordinates of A).

Thus if x is any element of Fn not in K0, x corresponds to a nonzero (a1, . . . , an) ∈ Zkm1
∼= Fn/K0,

and π lifts to a map π̂ : Fn → A with π(x) 6= 0. Therefore x /∈ K, which means K = K0, and
H(m,A) ∼= Zkm1

.

Another way to derive this result is by a lemma of F. Levi [Lev33], which proves that the
only characteristic subgroups of Fn satisfying F ′n < C < F ′n are F ′n · (Fn)m (i.e. the subgroups
〈〈F ′n, x

m1
1 , . . . , xm1

k 〉〉 that came up in our proof).
Another situation where we can compute H(m,G) explicitly is when G is a nonabelian finite

simple group. This follows immediately from Theorem 2.22, which proved that r(Shm(S)) = m (in
fact, our proof consisted of showing Fn/K ∼= Shm(S)).

Proposition 4.19. Let S be a nonabelian finite simple group, and n = hm(G) (the reduced Eulerian
function). Then H(m,S) ∼= Sn.

If we are given a presentation of a group, we can sometimes use this to compute a presentation
for H(m,G). An example where this works is the group Tp of 3× 3 upper triangular matrices (with
1’s on the diagonal) over the finite field Fp, for a prime p. This is one of the two nonabelian groups
of order p3.

Proposition 4.20. We have

H(m,Tp) = 〈x1, . . . , xn|xpi ; [xi, xj ]p; [xi, xj ] central〉

(where saying “x central” means we include all commutators [x, xi], so x commutes with everything).
In particular, this means |H(m,T )| = pm(m+1)/2, and H(2, T ) ∼= Tp.

Proof. Properties of the group Tp are that every nonzero element has order p, the group is generated
by two matrices

X1 =

 1 1 0
0 1 0
0 0 1

 X2 =

 1 0 0
0 1 1
0 0 1

 ,
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and that commutator [X1, X2] generates G′ = Z(G). So, for each generating sequence (g1, . . . , gn),
we have gpi = 1, that [gi, gj ]p = 1, and that [gi, gj ] ∈ G′ = Z(G). Therefore, the group

G = 〈x1, . . . , xn|xpi ; [xi, xj ]p; [xi, xj ] central〉

is a quotient of Fn by a subgroup contained in K. To show that this quotient is equal to H(m,T ) =
Fn/K, we need to show that for every nontrivial g ∈ G there is a surjective homomorphism G→ Tp
taking g to a nontrivial element of Tp.

We do this by noting that the relations defining G mean that any g ∈ G can be written in the
following “normal form”:

g = xa1
1 · · ·xam

m

∏
i<j

[xi, xj ]εij ,

where 0 ≤ ai < p and 0 ≤ εij < p. We can see this by noting that we can switch a pair xixj with
xjxi at the expense of adding a commutator [xi, xj ] that is in the center and can therefore be moved
to the right side of the expression.

Therefore, suffices to show that if we have an element

g = xa1
1 · · ·xam

m

∏
i<j

[xi, xj ]εij ,

that maps to 1 in Tp under any map G → Tp mapping (x1, . . . , xn) to a generating sequence, then
ai or εij nontrivial. Now, for any i < j, we can consider the generating sequence with X1 in the i-th
spot and X2 in the j-th spot, and 1’s everywhere else. The corresponding map into Tp takes g to

Xai
1 X

aj

2 [X1, X2]εij .

By assumption, this element is the identity in Tp, so we have 1 a1 aiaj + εij
0 1 aj
0 0 1

 =

 1 0 0
0 1 0
0 0 1


for each i, j. Therefore, ai = aj = εij = 0, proving the desired statement.

So, G = H(m,Tp), and distinct normal forms represent distinct elements. We can check that
there are pm · pm(m−1)/2 = pm(m+1)/2 distinct normal forms, so this is the order |H(m,Tp)|. For
m = 2, this implies |H(2, Tp)| = p3 = |Tp|; since Tp is a quotient of H(2, Tp) by definition, this
means H(2, Tp) ∼= Tp.

A similar but slightly more complicated computation works for the quaternion group Q8:

Proposition 4.21. We have H(2, Q8) ∼= Q8 and

H(m,Q8) ∼= 〈x1, . . . , xm|x4
i ; [xi, xj ]2;x2

i and [xi, xj ] central〉

for m > 2. In particular, |H(m,Q8)| = 2m(m+3)/2 for m > 2.

Proof. First consider the case m = 2. For any generating sequence (g1, g2), we have g4
i = 1 and

g2
1 = g2

2 = [g1, g2] ∈ Z(Q8). Therefore, H(2, Q8) is a quotient of

〈x1, x2|x4
1;x4

2;x2
1 = x2

2 = [x1, x2] central 〉.

Any element of this group can be put in the normal form

[x1, x2]εxk11 x
k2
2

for ε, k1, k2 ∈ {0, 1}. Hence this group has order at most 8. Since Q8 is a quotient group of it that
has order 8, this means H(m,Q8) must be isomorphic to Q8.
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Then consider the m > 2 case. If m > 2 and (g1, . . . , gm) is any generating sequence of Q8, we
know g4

i = 1, [gi, gj ]2 = 1, and that [gi, gj ] and g2
i are central (as Q′8 = Z(G) = 〈−1〉). So, H(m,Q8)

is a quotient of
〈x1, . . . , xn|x4

s; [xs, xt]2;x2
s and [xs, xt] central〉.

We can put elements of this group in a normal form∏
s<t

[xs, xt]εst

∏
s

xks
s

with 0 ≤ ks < 4 and 0 ≤ εst < 2. We claim distinct normal forms represent distinct elements of
H(m,Q8), which will prove that H(m,Q8) has this presentation and that it has order 4m2(m

2 ) =
2m(m+3)/2. Note that it suffices to show that the only normal form representing the identity has
ks = εst = 0. For convenience, if s > t we will let εst denote εts (as [xs, xt] has order 2, [xs, xt] =
[xt, xs], so any commutators in the “wrong order” can be switched to the correct order).

So, suppose a normal form ∏
s<t

[xs, xt]εstxkt
s

does represent the identity element. By using the generating sequence with gs = i and gt = j, and
the other gr equal to 1, projecting (x1, . . . , xn) to this sequence in Q8 gives

1 = (−1)εstiksjkt (4)

Similarly, if we take the generating sequence with gs = i, gt = j, gu = −1 for distinct s, t, u (which
we can do because m ≥ 3), and set the other gr = 1, we get

1 = (−1)εstiksjkt(−1)ku . (5)

So, for any coordinate u, we can set equations 4 and 5 equal to each other, and get 1 = (−1)ku .
This means each ku is either 0 or 2. Equation 4 then reduces to

1 = (−1)εst(−1)ks/2(−1)kt/2 = (−1)εst+ks/2+kt/2 (6)

Finally, consider the generating sequence with gs = i, gt = j, and gu = i (and other coordinates 1).
This gives

1 = (−1)εst(−1)εtuiksjktiku = (−1)εst+εtu+ks/2+kt/2+ku/2 (7)

Combining equations 6 and 7, we get that εtu = ku/2 for any coordinates t, u. Switching the
coordinates t and u gives the equation εut = kt/2. Thus kt = ku for all t, u, and therefore there is a
constant c ∈ {0, 1} so that every ks/2 and εst is equal to c. If c was 1, then equation 6 would give
1 = (−1)3 = −1, which is a contradiction. So we must have c = 0, meaning each ks and each εst is
zero. Thus our normal form was the trivial one, as desired.

5 Computation of c(G, En) and c(G, Ln) for n = r(G)

This section describes work done by Keith Dennis and me, to try to understand the number of orbits
of G under the actions of En(G) and Ln(G) in the case n = r(G). Theorem 3.15 of Diaconis and
Graham, which answers this question when G is abelian, is the foundation of this study. We have
tried various theoretical and computational techniques to consider various other cases.

5.1 Determinant Functions

Recall the argument of Diaconis and Graham to prove their theorem. The essence of the argument
is that, given a finite abelian group A = Zm1 × · · · × Zmn , there is a “determinant function” on
Γn(A) that takes values in (Z/mnZ)× (this determinant function is defined by first projecting s to
a generating sequence s of Znmn

, viewing s as a full-rank n × n matrix S over Z/mnZ, and then
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taking the determinant of S). The rest of the proof shows that this determinant function is exactly
the invariant that is needed - two generating sequences s and t are equivalent if and only if their
determinants are equal.

Moreover, we note that this construction of a determinant function can be extended to work for
any sequence in An (though the resulting value is no longer guaranteed to be in the group of units
(Z/mnZ)×). Note that most of the characterizing properties of the determinant function carry over
to this d : An → Z/mnZ:

• d is multilinear: if a = (a1, . . . , an) ∈ An and a′ = (a1, . . . , a
′
i, . . . , an) differs from a in one

entry, then d(a) + d(a′) = d(a1, . . . , ai + a′i, . . . , an).

• d is skew-symmetric: if σ ∈ Sn is a permutation, we have d(aσ(1), . . . , aσ(n)) = sgnσd(a1, . . . , an).

For convenience, we also list the properties of d that come from the theorem of Diaconis and
Graham:

• If (a1, . . . , an) is a generating sequence of A, then d(a1, . . . , an) is a unit in Z/mnZ.

• If (a1, . . . , an) and (b1, . . . , bn) are equivalent under left operations, then d(a1, . . . , an) =
d(b1, . . . , bn).

• If (a1, . . . , an) and (b1, . . . , bn) are generating sequences, then d(a1, . . . , an) = d(b1, . . . , bn)
means they are equivalent under left operations.

Now, we want to generalize this by constructing functions d : Gn → Z/mZ that satisfy similar
properties for nonabelian groups G. The first example is for the dihedral group of order 2n, D2n.
Define a determinant function d : (D2n)2 → Z/nZ by:

d(Ri, Rj) = 0

d(RiF,Rj) = −j
d(Ri, RjF ) = i

d(RiF,RjF ) = j − i

We can check (through easy but somewhat tedious calculations) that d is skew-symmetric and that
it is invariant under left operations. Moreover, recall that in Example 1.9 we showed that the length
2 generating sequences of D2n are given by:

1. Sequences (RiF,Rj) with 1 ≤ i, j ≤ n and (j, n) = 1.

2. Sequences (Ri, RjF ) with 1 ≤ i, j ≤ n and (i, n) = 1.

3. Sequences (RiF,RjF ) with 1 ≤ i, j ≤ n and (j − i, n) = 1.

By construction, we can see that d(a, b) is a unit in Z/nZ if and only if (a, b) is a generating sequence
of D2n. Moreover, we can check that if (a, b) is a generating sequence and d(a, b) = d(a′, b′), then
(a, b) are equivalent to (a′, b′) under left operations. To see this, start with the case (Ri, RjF ), which
has determinant i (which is a unit in Z/nZ). By left multiplication, we get

(Ri, RjF ) ∼ (Ri, Rik+jF ) = (Ri, RJF );

since i is a unit, we can get any element RJ , and hence (Ri, RjF ) is equivalent to any sequence of
type (1) with determinant i. Moreover, if (RIF,RJF ) is a sequence of type (2) with determinant i,
then J − I = i, and we get

(Ri, RjF ) ∼ (Ri, RJF ) ∼ (RJFRi, RJF ) = (RJ−iF,RJF ) = (RIF,RJF ).

Finally, if (RIF,R−i) is a sequence of type (3) with determinant i, we get

(Ri, RjF ) ∼ (RIF,RI+iF ) ∼ (RIF,RIFRI+iF ) = (RIF,R−i)

Summarizing, d satisfies a similar list of properties to the determinant function from the argument
of Diaconis-Graham:
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• d is alternating: d(a, b) = −d(b, a)

• A sequence (a, b) generates D2n if and only if d(a, b) generates Z/nZ (i.e. is a unit).

• If (a, b) and (a′, b′) are equivalent under left operations, then d(a, b) = d(a′, b′).

• If (a, b) and (a′, b′) are generating sequences with d(a, b) = d(a′, b′), then (a, b) and (a′, b′) are
equivalent under left operations.

We note that the second condition is in fact stronger than the corresponding condition for
Diaconis-Graham’s determinant, as for D2n we have (a, b) generates if and only if d(a, b) is a unit,
while for abelian groups only one implication holds.

Finally, we can show that this d satisfies an analogue to multilinearity, namely

d(aα, b) = αd(a, b) + d(α, b),

where we let αd(a, b) denote d(α−1aα, α−1bα). This is straightforward but quite tedious to check.
Another situation in which we can construct a determinant function is for nonabelian groups of

order pq, where p, q are distinct primes with p dividing q − 1. In this situation, we know there is a
unique (up to isomorphism) nonabelian group of order pq, with presentation

G = 〈X,Y |Xp = Y q = 1, XY = Y rX〉,

where r is an integer which has order p in (Z/qZ)×. From this presentation, and the fact that we
know |G| = pq, we can see that every element of G can be written as XiY j , and two elements XiY j

and XIY J are equal if and only if i ≡ I (mod p) and j ≡ J (mod q).
We can use this presentation to compute in G. If we let s be the inverse of r modulo q, then

we can compute Y X = XY s, and then get Y jX = XY js and Y jXi = XiY js
i

. This allows us to
compute in G in terms of this presentation. In particular, we can compute powers of an arbitrary
XiY j ∈ G:

(XiY j)k = XkiY jω(i,k)

where ω(i, k) is an integer given by:

ω(i, k) =
k−1∑
m=0

smi =


0 k = 0
k i = 0
ski−1
si−1 k, i 6= 0

.

Note that r(G) = 2 in this case, as G is not cyclic but is generated by the two elements X and Y .
So, we define a determinant function d : G2 → Z/qZ by:

d(XiY j , XkY `) = (si − 1)`− (sk − 1)j.

Note that since |Y | = q, |X| = p, and s has order p in (Z/qZ)×, this is well-defined (as if XiY j =
XIY J we know J ≡ j (mod q), and also that I ≡ i (mod p) implies sI ≡ si (mod q)).

We can then check that this determinant function d satisfies similar properties to the others we
have studied. For instance, it is clear d is antisymmetric (i.e. d(a, b) = −d(b, a)). To see that it is
invariant under left operations, we can compute

(XkY l) · (XiY j) = XkXiY `s
i

Y j = Xk+iY j+`s
i

and thus

d(XkY `XiY j , XkY `) = d(Xk+iY j+`s
i

, X ,Y `) = (sk+i − 1)`− (sk − 1)(`si + j)

= (sk+i − 1)`− (sksi − si)`− (sk − 1)j = (si − 1)`− (sk − 1)j

That d is invariant under the other possible left operations follows from a similar computation.
Next, we claim that a sequence (a, b) generates if and only if d(a, b) is a unit in Z/qZ, i.e. if and

only if d(a, b) 6= 0. To see this, we consider an arbitrary sequence (a, b) = (XiY j , XkY `) and split
into four cases based on the value of i and k:
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• i = k = 0: In this case (a, b) = (Y j , Y `), which doesn’t generate, and d(a, b) = 0.

• i = 0, k 6= 0: In this case (a, b) = (Y j , XkY `). This generates as long as j 6= 0, and
d(a, b) = −(sk − 1)j is nonzero as long as j 6= 0.

• k = 0, i 6= 0: Apply antisymmetry and the previous case.

• i, k 6= 0: Note that (XiY j , XkY `) does not generate G if and only if XkY ` is a power of
XiY j (if this holds, the pair generates a cyclic subgroup; if not, then it must generate G
by order considerations). Then, the computation (XiY j)n = XinY jω(i,n) means that (a, b)
fails to generate if and only if ` = jω(i, n), where n satisfies in = k. Above, we showed
ω(i, n) = sin−1

si−1 = sk−1
sn−1 . So, the pair fails to generate if and only if ` = j s

k−1
si−1 if and only if

d(a, b) = (si − 1)`− (sk − 1)j = 0.

Moreover, we can check that this determinant function d determines orbits of L2(G) exactly,
in that if d(a, b) = d(a′, b′) 6= 0 then (a, b) and (a′, b′) are equivalent generating sequences under
L2(G). To show this, we show that any sequence (a, b) with determinant d = d(a, b) is equivalent to
(X,Y d/(s−1)). This is a straightforward computation; we can use left operations to get (a, b) to a
sequence of the form (XY j , Y `), check that d(XY j , Y `) = d implies ` = d/(s−1), and then multiply
the first entry on the left by an appropriate power of Y ` to get X.

This determinant function also satisfies the same multilinearity as the one for the dihedral groups,
namely

d(aα, b) = αd(a, b) + d(α, b)

(where αd(a, b) denotes d(α−1aα, α−1bα)). This is again a straightforward computation. Letting
a = XiY j , α = XIY J , and b = XkY `, note first we can compute

aα = XiY jXIY J = Xi+IY js
I+J

α−1aα = Y −JX−IXiY jXIY J = Y −JX−IXiXIY J+jsI

= XiY J+jsI−Jsi

and similarly
α−1bα−1 = XkY J+`sI−Jsk

.

We then can compute

αd(a, b) + d(α, b) = d(XiY J+jsI−Jsi

, XkY J+`sI−Jsk

) + d(XIY J , XkY `)

= (si − 1)(`sI − J(si − 1))− (sk − 1)(jsI − J(si − 1)) + (sI − 1)`− (sk − 1)J

= (si − 1)sI`− (sk − 1)sIj + (sI − 1)`− (sk − 1)J

= (si+I − 1)`− (sk − 1)(jsI + J) = d(aα, b)

We have shown that we can construct a determinant function for two classes of nonabelian groups,
the dihedral groups and the nonabelian groups of order pq. We note that these are both semidirect
products, and in fact semidirect products of a cyclic group by another cyclic group. We also note
that these determinant functions are closely related to Higman’s commutator invariant (proposition
3.19). For instance, for the dihedral group we have

[a, b] = R2d(a,b),

where R is the generator of the normal subgroup 〈R〉 ∼= Z/nZ.
One can ask whether it is possible to construct determinant functions in more general situations.

A natural place to start might be for an arbitrary semidirect product of two cyclic groups. Ultimately,
we might hope to construct a determinant function for other types of semidirect products, or even
possibly for arbitrary solvable groups.
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5.2 p-Groups

The determinant functions of the previous section give a good understanding of the action of Ln(G)
for some specific classes of groups G. However, it is not at all apparent how to understand this
action for more complicated groups. Moreover, the sets Γn(G) quickly get large, making it difficult
to work out details of the action of Ln(G) and get intuition for this action. To better understand
this action, I have used computer programs to calculate values of c(G,En). These programs are
written using the GAP system [GAP08].

Since the value of c(G,En) is known for abelian groups, the obvious “next step” is to work with
nilpotent groups, and particularly p-groups. Also, we restrict our attention to the n = r(G) = 2
case, as computations are the easiest and fastest in this situation. We give some computations in
Table 5.2, for groups G satisfying r(G) = 2 and |G| = pk for 2 ≤ k ≤ 5 and p = 2, 3. Though this is
a relatively small number of groups, we can already see interesting patterns.

The first two columns of each table give the group structure. The second column gives GAP’s
name of that group in its small groups library (where, for instance, (16, 9) is the 9th group in the
library of groups of order 16). The first column gives a simple description of the group if one exists
(letting QDm denote quasidihedral groups and Qm denote generalized quaternion groups). Then,
the third column lists the value of c(G,E2) and last column gives the nilpotence class of G.

The most striking fact about this data is that for every 2-group listed, c(G,E2) is either 1, 2,
or 4, i.e. is a power of 2, and that for every 3-group listed, c(G,E2) is either 2, 6, or 18. Indeed,
all of the computations we have run for 2-groups have found that c(G,En) is a power of 2, and all
of the computations for 3-groups have found c(G,En) is 2 times a power of 3. This leads us to the
general conjecture that if P is a p-group for some prime p, then c(P,En) = (p − 1)pk for some k.
This holds in every case that we have checked, but we have not yet been able to prove this. The
following proposition seems to be a first step towards this:

Proposition 5.1. Suppose G has nilpotency class 2, i.e. G is nonabelian and the commutator
subgroup G′ is contained in the center Z(G). Let n = r(G). Then r(G/G′) = n, and c(G,En) =
c(G/G′, En); this value is given by Diaconis and Graham’s Theorem 3.15.

Proof. The fact that r(G/G′) = n follows from the fact that G′ is contained in the Frattini subgroup
Φ(G) for a nilpotent group G and from Proposition 1.30. Now, we want to show that if s, s′ ∈ Γn(G)
then s ∼ s′ if and only if π(s) ∼ π(s′), where π : G→ G/G′ is the canonical projection; this means
the components of En(G) correspond exactly to the components of En(G/G′). That s ∼ s′ implies
π(s) ∼ π(s′) holds in general, so we need to prove the converse. If π(s) ∼ π(s′), then the sequence
of basic elementary operations in En(G/G′) giving this equivalence lifts to a sequence of basic
elementary operations in En(G) giving that s is equivalent to some s′′ so that π(s′′) = π(s′). Thus,
it remains to show that if π(s) = π(s′) then s ∼ s′.

Now, G′ is the group generated by all commutators [g, h] = g−1h−1gh for g, h ∈ G. It is easy to
check that the following commutator identities hold in general:

[ab, c] = b−1[a, c]b[b, c] [a, bc] = [a, c]c−1[a, b]c

Since G′ ≤ Z(G) in our case, these reduce to

[ab, c] = [a, c][b, c] [a, bc] = [a, b][a, c].

This identity allows us to show

[b, a] = [a, b]−1 = [a−1, b] = [a, b−1].

If (g1, . . . , gn) generates G, we can use these identities to write any commutator [g, h] as a product
of commutators [gi, gj ], and therefore get that G′ is generated by [gi, gj ].

Then, we can show that if we have another generating sequence (g1z1, . . . , gnzn) (where each zi
is in G′ ≤ Z(G)), then for any indices i, j, k we can use elementary operations to get

(g1z1, . . . , gnzn) ∼ (g1z1, . . . , gizi[gj , gk], . . . , gnzn).
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Structure Group c(G,E2) Class
Z2 × Z2 (4,2) 1 1
Z4 × Z2 (8,2) 1 1

D8 (8,3) 1 2
Q8 (8,4) 1 2

Z4 × Z4 (16,2) 2 1
(Z4 × Z2)o Z2 (16,3) 1 2

Z4 o Z4 (16,4) 1 2
Z8 × Z2 (16,5) 1 1
Z8 o Z2 (16,6) 1 2

D16 (16,7) 2 3
QD16 (16,8) 1 3
Q16 (16,9) 1 3

(Z4 × Z2)o Z4 (32,2) 2 2
Z8 × Z4 (32,3) 2 1
Z8 o Z4 (32,4) 2 2

(Z8 × Z2)o Z2 (32,5) 1 2
(32,6) 1 3

(Z8 o Z2)o Z2 (32,7) 1 3
(32,8) 1 3

(Z8 × Z2)o Z2 (32,9) 2 3
Q8 o Z4 (32,10) 1 3

(Z4 × Z4)o Z2 (32,11) 1 3
Z4 o Z8 (32,12) 1 2
Z8 o Z4 (32,13) 2 3
Z8 o Z4 (32,14) 2 3

(32,15) 1 3
Z16 × Z2 (32,16) 1 1
Z16 o Z2 (32,17) 1 2

D32 (32,18) 4 4
QD32 (32,19) 2 4
Q32 (32,20) 2 4

Structure Group c(G,E2) Class
Z3 × Z3 (9,2) 2 1
Z9 × Z3 (27,2) 2 1

(Z3 × Z3)o Z3 (27,3) 2 2
Z9 o Z3 (27,4) 2 2
Z9 × Z9 (81,2) 6 1

(Z9 × Z3)o Z3 (81,3) 2 2
Z9 o Z9 (81,4) 2 2
Z27 × Z3 (81,5) 2 1
Z27 o Z3 (81,6) 2 2

(Z3)3 o Z3 (81,7) 2 3
(Z9 × Z3)o Z3 (81,8) 2 3
(Z9 × Z3)o Z3 (81,9) 6 3

(81,10) 2 3
(Z9 × Z3)o Z9 (243,2) 6 2

(243,3) 18 3
(243,4) 6 3
(243,5) 2 3
(243,6) 6 3
(243,7) 2 3
(243,8) 6 3
(243,9) 6 3

Z27 × Z9 (243,10) 6 1
Z27 o Z9 (243,11) 6 2

(Z27 × Z3)o Z3 (243,12) 2 2
(243,13) 6 3

(Z9 × Z3) : Z9 (243,14) 6 3
(Z9 × Z3) : Z9 (243,15) 6 3

(Z27 o Z3)o Z3 (243,16) 2 3
(Z9 × Z2

3 )o Z3 (243,17) 6 3
(Z9 o Z3)o Z3 (243,18) 2 3

(Z27 × Z3)o Z3 (243,19) 2 3
(Z27 × Z3)o Z3 (243,20) 2 3

Z9 o Z27 (243,21) 2 2
Z27 o Z9 (243,22) 2 3
Z81 × Z3 (243,23) 2 1
Z81 o Z3 (243,24) 2 2

(Z9 × Z9)o Z9 (243,25) 6 4
(Z9 × Z9)o Z9 (243,26) 18 4

(243,27) 6 4
(Z9 o Z9)o Z3 (243,28) 6 4

(243,29) 6 4
(243,30) 6 4

Table 1: Data for small 2-groups and 3-groups
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If i 6= j, k then we can use right operations to build [gjzj , gkzk] to the right of gizi, and note that
[gjzj , gkzk] = [gj , gk] because zj , zk ∈ Z(G). If i = k and i 6= j, then we can use left and right
operations to replace gizi by

(gjzj)−1(gizi)(gjzj) = (g−1
j gigj)zi = (gi[gi, gj ])zi = gizi[gi, gj ].

So, we can build an arbitrary commutator [gi, gj ] in an arbitrary position of a generating sequence
(g1z1, . . . , gnzn). Since each zi is in G′ and hence a product of these commutators [gi, gj ], we can
use this process repeatedly to build z−1

i in the i-th spot for each i. Thus, we get (g1, . . . , gn) ∼
(g1z1, . . . , gnzn) under En(G). This proves that if π(s) = π(s′) then s ∼ s′, which finishes the
proof.

Note that no such theorem can hold for nilpotency class 3; we have examples where it fails (as
the dihedral group D16 has nilpotency class 3 and has more components than its abelianization,
as does the group denoted (81,9) by GAP). Understanding the behavior of the groups D16, QD16,
Q16, (81,7), (81,8), (81,9), and (81,10) seems to be the next step in gaining a better theoretical
understanding of the components of En(G) for p-groups. These seven groups all have nilpotency
class 3, and therefore necessarily have similar structures regarding centers and commutators. One
would hope that understanding what makes D16 and (81,9) behave differently than the others would
lead to a theoretical understanding of the values of c(G,En) for p-groups G.

5.3 Other Computations

These computational techniques also shed light on various other questions regarding the actions of
En(G) and Ln(G) on Γn(G). One such question is whether the orbits of these actions are all of the
same size. We note that the determinant functions of Section 5.1 allow us to prove that the orbits
of the action of Ln(G) are all the same size if G is abelian, dihedral, or nonabelian of order pq. In
each of these cases, the determinant function allows us to explicitly describe the orbits and check
that they have the same cardinality.

We can computationally check the size of the orbits of En(G) or Ln(G) for any given finite group
G, as an extension of the method for computing the number of orbits. Indeed, for each solvable
group G that I have tested, the orbits of En(G) are all the same size, as are the orbits of Ln(G). This
leads us to conjecture that this is true for all solvable groups G, and in particular for the special case
of p-groups. One would expect that techniques for investigating c(G,En) for p-groups would also
yield information about the uniformity of orbit sizes. We could also hope to prove this uniformity in
some cases (or perhaps in general) by finding a more general construction for determinant functions.

However, we note that that the orbits of En(G) or Ln(G) are not uniformly sized for every
group. In fact, computations show that there are differently sized components for even the simplest
nonsolvable groups. Table 5.3 contains the list of component sizes for En(G) and Ln(G) for a few
of the smallest nonabelian simple groups, a few small groups with A5 in their Jordan-Holder series,
and A5 × A5. An expression such as “50 (×24)” in the list of component sizes denotes that there
are 24 components of size 50.

Another question we can ask is, given a group G and a quotient group G, if c(G,En) necessarily
divides c(G,En) (or if c(G,Ln) divides c(G,Ln)). By Proposition 3.6, we know c(H,En) ≤ c(G,En)
and c(H,Ln) ≤ c(G,Ln).

Note that if our conjecture about the number of orbits of p-groups (from the previous section)
is satisfied, then if P is a p-group and P a quotient (which is also a p-group), c(P,En) = pn(p− 1)
and c(P ,En) = pm(p − 1) for m ≤ n, which means c(P ,En) does indeed divide c(P,En) (and the
same holds for Ln).

The data for nonsolvable groups in Table 5.3 is striking. Note SL(2, 5), Z2 × A5, and GL(2, 4)
all have A5 as quotients (while S5 does not). If G is one of these three groups, then not only do
we have c(G,E2) = c(A5, E2) and c(G,L2) = c(A5, L2), but for each G the orbit sizes are exactly
integer multiples of the orbit sizes of A5 (the multiple is JG : A5K2 in each case). This suggests that
the projection onto quotient groups behaves uniformly with respect to the orbits.
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Group c(G,E2) Component Sizes c(G,L2) Component Sizes
A5 3 600 (×2), 1080 44 50 (×24), 54 (×20)

PSL(2, 7) 5 1176 (×2), 5376 (×2), 6048 188 49 (×48), 108 (×56), 128 (×84)
A6 10 5400 (×4), 7200 (×2), 792 75 (×288), 96 (×180),

8640 (×2), 11520 (×2) 100 (×144), 128 (×180)
PSL(2, 8) 7 27216 (×4), 35280 (×3) 440 486 (×224), 490 (×216)

S5 3 1800, 2160, 2880 74 75 (×24), 96 (×30), 108 (×20)
SL(2, 5) 3 2400 (×2), 4320 44 200 (×24), 216 (×20)
Z2 ×A5 3 1800 (×2), 3240 44 150 (×24), 162 (×20)
GL(2, 4) 3 4800 (×2), 8640 44 400 (×24), 432 (×20)
A5 ×A5 9 324000 (×4), 648000 (×4), 1936 2250 (×576), 2592 (×400),

1036800 2700 (×960)

Table 2: Component sizes for small nonsolvable groups

Moreover, the data for A5 × A5 shows that c(A2
5, En) = c(A5, En)2 and c(A2

5, Ln) = c(A5, Ln)2.
The orbits for A2

5 seem to match up with pairs of orbits for A5. For instance, for the orbits under
elementary operations, there are four orbits of size 324000 = 540 ∗ 600 (which correspond to pairs of
orbits of size 600) there are four orbits of size 648000 = 600∗1080 (which correspond to pairs including
the orbit of size 1080 and one of the orbits of size 600), and one orbit of size 1036800 = 960 ∗ 1080,
corresponding to the single pair of two copies of the orbit of 1080. From this data, it seems clear that
there is something interesting going on, though so far we can’t prove much about it. (Note however
we do not believe that c(Gk, En) is always the k-th power of c(G,En), and in fact we suspect that
c(G/N,En) does not always divide c(G,En). A good place to look for a counterexample would be
taking G = A19

5 , the largest power of A5 that is generated by two elements.)
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