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ABSTRACT. There is a standard bijection between the non-crossing
partition lattice NC(n) and the set of non-crossing pairings NC2(2n)
in the larger lattice NC(2n). We study the image of this bijection on
subsets of NC2(2n) corresponding to bit strings of length 2n. We
show that the resulting posets are connected, convex sub-posets
of NC(n). We give simple algorithms to calculate the extremal ele-
ments in these posets. We show that each set of partitions mapped
from subsets of NC2(2n) corresponding to bit strings of length 2n
is unique up to inversion of 1s and 0s. Finally, we show that the
resulting poset is constructible.

1. INTRODUCTION

1.1. Posets of Non-Crossing Partitions. We follow the introduction
written in [1] by Kemp as background to this thesis.

Let [n] denote the set {1, 2, . . . , n}, and let P(n) denote the set of
all partitions of [n]; that is, π ∈ P(n) means that π is a collection
{B1, . . . , Br} of non-empty disjoint subsets B j ⊆ [n] such that B1 ∪ · · · ∪
Br = [n]. (The subsets B j are called the blocks of π.) There is a natural
poset ordering on P(n): namely, we say π ≤ σ if π is a refinement of
σ (that is, each block of σ is contained in a block of π). It is a clas-
sical result (see, for instance [7], page 127) that (P(n),≤) is actually
a graded lattice, graded by the number of blocks in each partition;
the maximal and minimal elements (usually denoted 0n and 1n) are
pictured below.

16 06

FIGURE 1. The maximal and minimal elements, 16

and 06, in the lattice P(6), along with another (cross-
ing) partition of [6]. They are represented here as linear
partition diagrams, which we will use through much
of this thesis.
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There is a natural linear order on [n], and from it we can define
crossings: given a partition π of [n], two blocks B1, B2 ∈ π are said
to cross if there exist i1, j1 ∈ B1 and i2, j2 ∈ B2 such that i1 < i2 <
j1 < j2. An example of a partition with a crossing is also given in
Figure 1. A partition is called non-crossing if no two of its blocks
cross. The set of non-crossing partitions of [n] is denoted NC(n), and
is a graded lattice in its own right under the refinement ordering.
It is, in fact, more symmetric than P(n), as it is self-dual (we will
discuss the associated complementation map below).

Both P(n) and NC(n) were explicitly enumerated long ago; |P(n)|
is the Bell number Bn, while |NC(n)| is counted by the Catalan num-
ber Cn = 1

n+1

(
2n
n

)
. This last result may be proved recursively quite

easily, but for our purposes there is a somewhat simpler proof that
goes through the non-crossing pairings. A pairing is a partition each of
whose blocks has two elements. Evidently, there are no pairings of
[n] if n is odd; P2(2n) denotes the set of pairings of [2n] and NC2(2n)
denotes the non-crossing pairings of [2n]. It is easy to check that
|P2(2n)| = (2n − 1)!!. It turns out that |NC(2n)| is also counted by the
Catalan number Cn, as Figure 2 demonstrates. This result affords a
slightly different proof that |NC(n)| = Cn, which motivates our main
results that follow. We record this proof in Figure 2.

1 2 3 4 5 6 2k 2k + 1 · · · 2n· · ·

FIGURE 2. In any non-crossing pairing of [2n], 1 must
pair to an even number (else there would be an odd
number of indices enclosed by the pairing, forcing a
crossing). Hence, 1 can pair to any of 2, 4, . . . , 2n. If it
pairs to 2k then, as the figure demonstrates, the non-
crossing condition factors the remaining possible pair-
ings into two independent factors: the pairings of the
2(k − 1) indices enclosed by the block {1, 2k}, and the
remaining 2(n − k) indices to the right. So, conditioned
on 1 pairing to 2k, there are |NC2(2(k− 1)) ·NC2(2(n− k))
pairings. In total, then, NC2(2n) =

∑n
k=1 |NC2(2(k − 1))| ·

|NC2(2(n − k))|; this is the recurrence relation for the
Catalan numbers.
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Proposition 1.1. There is a bijection θn : NC2(2n)→ NC(n).

Proof. The idea is to map [2n] onto [n] in a 2− 1 fashion, such that the
induced map on partitions preserves the non-crossing conditions.
There are many ways to do this; we will use the map h( j) = d j/2e.
For notational clarity we will use boldface when referring to the el-
ements of [n]. Explicitly, given any partition π ∈ P(2n), we form the
partition θn(π) ∈ P(n) as follows: i, j ∈ [n] are in the same block of
θn(π) iff the sets h−1{i} = {2i−1, 2i}, h−1{j} = {2 j−1, 2 j} share a common
block. Figure 3 below demonstrates.

FIGURE 3. Three partitions in P(8), and their images
under θ4. The action of h is to collapse each consecutive
pair {2 j − 1, 2 j} to the single index j, hence we can vi-
sualize the action of θn by connecting these neighbours
(as we have done with dotted lines above).

Now, let π ∈ NC(2n). Suppose (for a contradiction) that θn(π) has a
crossing – say B1, B2 ∈ θn(π) cross: i1 < i2 < j1 < j2, where i1, j1 ∈ B1

and i2, j2 ∈ B2. By definition, i1, j1 ∈ B1 ∈ θn(π) means that one of the
two numbers h−1{i1} = {2i1 − 1, 2i1} shares a common block V1 ∈ π
with one of the two numbers h−1{j1} = {2 j1 − 1, 2 j1}. Similarly, one
of the two numbers h−1{i2} = {2i2 − 1, 2i2} shares a common block
V2 ∈ π with one of the two numbers h−1{j2} = {2 j2 − 1, 2 j2}. Notice
that 2i1 − 1 < 2i1 < 2i2 − 1 < 2i2 < 2 j1 − 1 < 2 j1 < 2 j2 − 1 < 2 j2. It is
easy to see, therefore, that the blocks V1,V2 ∈ π must cross, which is
a contradiction. Hence, θn maps NC(2n) into NC(n).

In particular, the image θn(NC2(2n)) of θn on non-crossing pairings
is contained in NC(n). We will now show that this mapping is a bi-
jection, by explicitly producing its inverse. From Figure 3 above,
we see that θn(π) is produced from π by “collapsing” each consec-
utive pair of indices in [2n] into a single index in [n]. To reverse
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this, we must “double” each line in the partition diagram of the tar-
get image. Let σ ∈ NC(n), and consider any block B = {i1, . . . , ik} in
σ, where i1 < · · · < ik. Doubling these lines simply means that we
must include the following 2-blocks in ϕn(σ): {2i1 − 1, 2ik}, {2i1, 2i2 −
1}, {2i2, 2i3 − 1}, . . . , {2ik−1, 2ik − 1}. An argument much like the one
above shows that the pairing ϕn(σ) is non-crossing, and it is a simple
matter to check that ϕn : NC(n) → NC2(2n) and θn : NC2(2n) → NC(n)
are inverses. �

FIGURE 4. The action of ϕ12 on a partition π in NC(12).
Topologically, we take a tubular neighbourhood of the
1-skeleton that represents the partition diagram of π,
and then take the boundary of this minus the top
boundary segments. The resulting 1-skeleton is the
partition diagram of ϕ12(π) in NC2(24).

Remark 1.2. Aside from giving a concrete bijection between NC2(2n)
and NC(n) for enumeration purposes, the map θn allows us to import
the lattice structure of NC(n) into NC2(2n). Note that every pairing
in NC2(2n) has n blocks, and so all pairings are incomparable in the
refinement order on NC(2n). But we can pull back the ordering of
NC(n) via θn, as follows.

Definition 1.3. Given π, σ ∈ NC2(2n), say that π ≤θ σ iff θn(π) ≤ θn(σ)
in NC(n). Since θn is a bijection, this means that (NC2(2n),≤θ) is a lattice
isomorphic to NC(n). Refer to ≤θ as the thickened ordering on NC2(2n).

Hence, any subset T ⊆ NC2(2n) has a natural poset structure induced
by the thickened ordering on NC2(2n). This brings us to the special
subsets of non-crossing pairings we are motivated to study in this
thesis.

1.2. Knights and Ladies of the Round Table. King Arthur is host-
ing a dinner for his n Knights, to which he has invited n Ladies. The
2n guests seat themselves randomly around the Round Table, before
Arthur can assign seats to them. Given their seating arrangement, in
how many distinct ways can the Knights and Ladies pair off to chat
without any conversations crossing?
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Put in slightly more precise terms, the pairings in question are de-
fined as follows.

Definition 1.4. Let s = s1 · · · s2n be a bit string that is balanced: |{ j ; s j =

0}| = |{ j ; s j = 1}| = n. The set of non-crossing pairings of s, denoted
NC2(s), is the set of non-crossing pairings π ∈ NC2(2n) with the property
that, for any block B = {i, j} ∈ π, si , s j. That is, NC2(s) consists of those
non-crossing pairings that match 1s to 0s in s.

1

0

1

1

0

0

0

1

0

1

1

1

0

1

1

0

0

0

1

0

0

1

1

0

FIGURE 5. Two non-crossing pairings of the bit string
s = 110001111000. They are represented here in circu-
lar form.

Remark 1.5. Cyclic permutations of [n] induce lattice isomorphisms
of NC(n) (and these, together with the reflection [n] 7→ [n]∗ = (n, n −
1, . . . , 2, 1), generate all lattice isomorphisms, see [6]). Hence, it is
possible to draw partition diagrams either on a line as we have been
doing up to now, or on a circle as in Figure 5 above. However, as we
will discuss in Section 3, the thickened ordering ≤θ on NC2(2n) is not
preserved under all cyclic permutations of [2n], and so we typically
prefer the linear representation when convenient.

The problem of the Knights and Ladies of the Round Table is the
question of enumerating NC2(s) for any given balanced bit string s.
This is a surprisingly difficult problem, which has been addressed
in different ways in the recent papers [2, 3, 4, 5]. This set of pair-
ings has important connections with random matrix theory and free
probability theory, which provided the motivation for its study. In
this thesis, we are primarily interested in studying the poset struc-
ture (NC2(s),≤θ). To that end, we introduce some useful notation.
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Notation 1.6. For a balanced bit string s ∈ {0, 1}2n, let Ts = T (s) denote
the sub-poset θn (NC2(s)) of NC(n). Alternatively, Ts denotes the set NC2(s)
equipped with the thickened ordering ≤θ.
Example 1.7. In any non-crossing pairing of [2n], each block must pair
two indices of opposite parity, or else there would be an odd number
of indices enclosed by that block resulting in a crossing. In other
words, any non-crossing pairing is automatically in NC2(1010 · · · 10).
Thus T ((10)n) is equal (as a poset) to NC(n).

Example 1.8. The reader may readily verify that the bit string 1n0n

has only one pairing, pictured in Figure 6 below. Hence, T (1n0n) is
the trivial singleton poset.

$ =

FIGURE 6. The single pairing $ of 1n0n.

Example 1.9. Consider the bit string s = 1011010010. The set NC2(s)
contains 10 pairings. These pairings, their image under θ5 in NC(5),
and the poset Ts, are displaying in Figure 7.

2. THE KREWERAS COMPLEMENT

Following the above background, we will now prove a few theorems
classifying the structure of all the posets Ts. In order to do so, we first
define the Kreweras complement. Let {1, 2, ..., n} and {1′, 2′, ..., n′} be
two disjoint sets of n elements, and order the union of these two sets
{1 < 1′ < 2 < 2′ < ... < n < n′}.
Definition 2.1. The Kreweras complement of π ∈ NC(1, 2, ..., n) is the
largest elementσ ∈ NC(1′, 2′, ..., n′) such that π∪σ ∈ NC(1, 1′, 2, 2′, ..., n, n′)
[6].

Rotation of π ∈ NC2(2n) by an even number of places corresponds to
a rotation of θn(π), since we are essentially rotating the n underlying
elements of the partition θn(π). Rotation by one element to the left,
shown in Figure 8, gives the Kreweras complement.

Lemma 2.2. Let π′ be π rotated one element to the left. Then, θn(π′) is the
Kreweras complement of θn(π).
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1 0 1 1 0 1 0 0 1 0

π ∈ NC2(1011010010) θ5(π)

T (1011010010)

π0

π0

FIGURE 7. The ten pairings in NC2(s) with s =

1011010010, and their images under the thickening θ5.
Also shown is the poset Ts in NC(5). The astute ob-
server will notice that Ts is actually equal to the whole
interval [π0, 15] in NC(5).

Proof. The function θn acting on π′ joins the (2i)th and (2i+1)th elements
of the original π for i ≥ 1, and brings the first element to the right and
joins it with the (2n)th element, with blocks as described earlier. Now,
if we place these n elements between our original n elements in the
way described in the definition of the Kreweras complement, θn(π′)
is a partition in NC(n) whose union with the original partition θn(π) is
in NC(2n). To see this, note that in order for a crossing to occur, there
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FIGURE 8.

must be some elements i < j of θn(π) and i′ < j′ of θn(π′) such that i
and j are in a block a, and i′ and j′ are in a block b with i < i′ < j < j′.
Furthermore, these elements can be chosen so that

• There are no elements of either a or b between i′ and j.
• i is the greatest element of a which is less than i′.
• j′ is the least element of b which is greater than j.

But this would imply that there is a pairing between element 2i′ and
2 j′−1 in π′, and another between 2 j−1 and 2i in π, which corresponds
to crossing pairings in π.

Now we show that θn(π′) is the largest partition whose union with
θn(π) is in NC(2n), which tells us that θn(π′) is the Kreweras comple-
ment of θn(π). We prove this by contradiction. If such a partition σ
is strictly larger than θn(π′), then at least one of its blocks contains
more than one block of θn(π′). Since the union of σ with θn(π) is non-
crossing, any refinement in the interval [θn(π′), σ] has a union with
θn(π) that is non-crossing, so we can take two blocks of θn(π′) that lie
in the same block of σ and join them without introducing any cross-
ings. Let a and b be two such blocks. Find a pair of elements, i′ from
a and j′ from the b, such that no elements from either block are in be-
tween those. Without loss of generality, assume that i′ < j′. Consider
the underlying pairing of π′ where the bits 2i′ − 1 and 2i′ correspond
to element i′ in θn(π′). Note that these are really the bits 2i and 2i + 1
in π. We see that 2i + 1 is paired to some bit 2k. Then in θn(π), the
element i + 1 is in the same block as the element k. Since the union
of θn(π′) and θn(π) is non-crossing, k is neither to the left of i nor to the
right of j. Thus, in θn(π), i < k < j. But then a has an element between
i and j, a contradiction. Hence, rotation by an odd number of places
gives us a rotation of the Kreweras complement of the partition. �
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3. CONVEXITY

Our next goal is to show that Ts is convex. A subset Q of a poset P
is convex if whenever a and c are in Q, and a ≤ b ≤ c, then b ∈ Q.

Theorem 3.1. Let s be a balanced bit string in {0, 1}2n. Then the poset Ts

is convex in NC(n).

Before we prove this we require some preliminary results and defi-
nitions.

Definition 3.2. Given a bitstring s in Ωn, a partition in NC(n) is s-valid
if it is in Ts.

Definition 3.3. A block A is nested if there is some block which has an
element to the left of the first element of A and an element to the right of the
last element of A. A block which is not nested is top-level.

Let a and c be s-valid with a ≤ c. Pick a block X of c. Consider any
b in [a, c]. Let b′ be b restricted to X, a′ be a restricted to X, c′ be c
restricted to X (which is 1X), and s′ be the substring associated with
X. Pick a block Y of b′.

Lemma 3.4. If there are two top-level blocks in a′ restricted to Y , then we
can merge them to form a new partition a1 which is s-valid.

Proof. Let the two blocks be as shown below.

zw x y

FIGURE 9.

Let w, x, y, and z be as in Figure 9. Since the blocks are part of
Y , any blocks with elements between the elements x and y in b′ are
nested in Y , and since a′ is a refinement of b′, any block of a′ with an
element between the two blocks shown only has elements between
those two blocks. So the elements in s′ between x and y are paired
only amongst themselves. Suppose w is 1. Then x is 0, since a′ is s′-
valid and w is paired to x in a′. Let the element to the right of x be u1.
Since c restricted to X is the maximal element, every even-numbered
element is paired to the next element (which is odd-numbered). So
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u1 is 1. We know u1 is paired with some element v1 in a′ before y, so v1

is 0, and it is in turn paired to the element to its right u2 in c′, and so
on. Since there are a finite number of elements between x and y, there
will be some ul = y, whereupon this process terminates. Because y is
paired to z in a′, z is 0. This process is shown in Figure 10.

z

1 0 01 0 1 0 1 0 1

w x y

FIGURE 10.

Now we can make a different pairing of s with w paired to z and x
paired to y, and everything else paired as in a. This is non crossing,
as elements between x and y only pair between themselves, so the
partition we get from this new pairing is s-valid, and this partition
is a with those two blocks joined, as shown in Figure 11. �

zw x y

FIGURE 11.

Lemma 3.5. If there are blocks in a′ restricted to Y nested in a top-level
block of a′ restricted to Y , we can merge one of the nested blocks with the
top level block to form a new partition a1 which is s-valid.

Proof. Picking such a top-level block of a′ restricted to Y , choose the
leftmost such nested block. These blocks are as shown in Figure 12.

Following a similar argument as in 3.4, the elements between w
and x are paired only to themselves, and similarly for the elements
between y and z. Then, continuing that argument along the same
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zw x y

FIGURE 12.

lines, if w is 1, then x is 0, y is 1, and z is 0, so we can pair w to x and
y to z instead, giving a new partition a1 which is s-valid, joining the
two blocks as in Figure 13. �

zw x y

FIGURE 13.

Now we are ready to prove Theorem 3.1.

Proof. Consider any b in [a, c]. Let the blocks of c be X1, X2, ... Xk. If
for every block Xi of c, b restricted to Xi is valid with respect to the
substring associated with that block Xi, then b is s-valid, since we can
then pair the elements in each block to form a pairing which maps to
b. Thus we only need to consider a particular block X of c. Note that
c restricted to X is the maximal element. Let b′, a′, c′, and s′ be as in
the lemmas above. If b′ is the maximal element or a′ = b′, then b′ is
s′-valid, and we are done. If not, we consider the blocks Y1, Y2, ... Yk

of b′. There is some block Y of b′ such that a′ restricted to Y is not the
maximal element. Now we can apply either of the two lemmas to a
to get a1 such that a1 is s-valid, and a < a1 ≤ b ≤ c. Repeat the same
process to a1 to get a2, and so on. Since the number of blocks of a and
b are finite, we will eventually get some am such that am has the same
number of blocks as b, so am = b, and am is s-valid. Thus b is s-valid
as well. �
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It follows from Theorem 3.1 that, if Ts (s ∈ {0, 1}2n) has a unique
maximal element M and minimal element m, then Ts = [m, M] con-
sists of the interval in NC(n) between them; an example is demon-
strated in Figure 7. In general, as we will see, Ts may have several
maxima M1, . . . , Mr and minima m1, . . . ,ms. Since Ts is convex,

Ts =
⋃
1≤i≤r
1≤ j≤s

[mi, M j].

So Ts is completely determined by identifying its maxima and min-
ima. In order to understand these, we introduce the following.

Definition 3.6. Let s be a balanced bit string in {0, 1}2n. Construct a string
δ(s) in {�, 0, 1}n as follows. For each j ∈ [n], if s2 j−1 = s2 j then δ(s) j = s2 j.
Otherwise, if s2 j−1 , s2 j, then δ(s) j = �.
Example 3.7. Let s = 1011010010 as in Example 1.9. Then δ(s) = � 1 �
0 �. On the other hand, with t = 111000111000, we have δ(t) = 1 �
0 1 � 0.

The construction insures that the (ordered) set of 1s and 0s in δ(s)
forms a balanced substring: the �s correspond to 01 (or 10) pairs in
s, so removing them means removing equal numbers of 1s and 0s.
Hence, since s is balanced, the remaining substring is also balanced.

Notation 3.8. Let δ ∈ {�, 1, 0}n, with balanced {0, 1}-substring. Denote by
NC1,2(δ) the set of partitions π ∈ [n] such that:

• If δ j = � then { j} is a singleton block in π.
• If δ j ∈ {0, 1}, then j is in a two-block { j, k} ∈ π where δk = 1 − δ j.

That is, π contains only one-blocks and two-blocks, where the one-blocks are
the �s in δ and the two blocks pair 1s with 0s in δ.

This allows us to easily describe the minimal elements in Ts.

Theorem 3.9. Let s be a balanced bit string in {0, 1}2n. Then the minimal
elements of the poset Ts ⊆ NC(n) are precisely the partitions in NC1,2(δ(s)).

Proof. First, we note that a minima of this poset must have block
sizes of either 1 or 2. If it has a block with size greater than 2, then the
substring associated with it must have only one pairing, that which
gives the maximal element. If not, there would be another pairing
of that substring which corresponds to a valid refinement of the par-
tition, contradicting minimality. But the only strings with just one
pairing are rotations of 11...1 00...0, and the partition associated with
such pairings is not the maximal element in NC(i) for i > 2. Thus the
blocks all have size at most 2. In fact, this shows that the associated
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substring for a 2-block is 1100 or 0011, and that for a 1-block is 10 or
01.

This means that if two elements of the string, s2 j−1 and s2 j, are differ-
ent, then they are paired together and form a 1-block in any minima.
If they are of the same type, they are paired to two elements s2k−1 and
s2k, of a different type, s2 j−1 with s2k, and s2k−1 and s2 j. This forms a
2-block in the minima. This gives a simple algorithm to determine
all possible minima. First we determine all the singletons, which are
those pairs s2 j−1 , s2 j. The remaining pairs of elements s2 j−1 and s2 j

that have the same value are paired with another pair of elements as
described above, forming a 2-block. This corresponds to a pairing of
the associated bits in δ(s). The set of all such partitions is precisely
NC1,2(δ(s)). Hence any minima must be an element of NC1,2(δ(s)).

0

1 1 1 00 0 1 0 0 11 1 1 0 0 0 0

1 0 1 1 0

1

FIGURE 14.

Any pairing of δ(s) corresponds to a pairing of the elements of the
original string by inverting the above process. One such example is
shown in Figure 14 and Figure 15.

These are all indeed s-valid, and cannot be refined further, so they
are all minima. Since all minima must have this form, the minima
are exactly the elements of NC1,2(δ(s)). Note that all of them have the
same number of blocks (the number of singletons plus the number
of pairings). �

Because the Kreweras complementation map reverses order, we
can also obtain the maxima via the same method. It follows that all
of the maxima have the same number of blocks. To do this, rotate
the string by moving the leftmost element to the right as shown in
Figure 16. Perform the procedure as above, then shift back the added
lines, giving us the maxima (Figure 17).

The number of 2-blocks in the minima is the number of 1s in δ(s),
which is the number n1 of adjacent 1s with the first in an odd posi-
tion and the second in an even position. Thus the number of blocks
is n − n1. Similarly, the number of blocks in each maxima is n + 1 −
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0

1 1 1 00 0 1 0 0 11 1 1 0 0 0 0

1 1 0 01

1

FIGURE 15.

1

00001111001001011

010

1

FIGURE 16.

1

1 1 1 00 0 1 0 0 11 1 1 0 0 0 0

1 0 0

1

FIGURE 17.

(n − n2) = 1 + n2, where n2 is the number of adjacent 1s with the first
in an even position and the second in an odd position, taking the
first and last bits to be adjacent. Thus the maximum chain length is
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n−n1−1−n2 which is n−1 minus the total number of pairs of adjacent
1s. Note that each sequence of k adjacent 1s bordered on each side
by a 0 contributes k to the total count of 1s, and k − 1 to the number
of adjacent pairs of 1s. Then if there are in total m such sequences,
there are n − m pairs of adjacent 1s, so the maximum chain length is
m − 1. This give us the following proposition.

Proposition 3.10. If there are m distinct sequences of adjacent 1s bordered
by 0s on either side in s, taking the first and last bit as adjacent, then Ts is
graded with length m − 1.

We can use this to easily determine the structure of all such Ts

graded with length 1. First, we present a lemma.

Lemma 3.11. In Ts, any element 1 rank above the minima is greater than
not more than 2 minima, and any element 1 rank below the maxima is less
than not more than 2 maxima.

Proof. An element a 1 rank above the minima has the same structure
as a minimum less than it, except that two of its blocks are joined
together into one block. None of its other blocks can be separated
to form a minimum, since its other 2-blocks cannot be broken up
into 1-blocks to form a minimum from Theorem 3.9. If two 1-blocks
were joined, the resulting block can only be partitioned in one way
to form a minimum. Likewise if a 1-block and 2-block were joined,
since the 1-block must be present in any minimum, from Theorem
3.9. If two 2-blocks were joined, they must be partitioned into two
2-blocks by Theorem 3.9, and a 4-block can be partitioned into two
noncrossing 2-blocks in only two ways. Thus there are at most two
minima below a. For an element 1 rank below the maxima, rotating
one bit inverts the poset, so it becomes 1 rank above the minima, and
the result follows. �

Proposition 3.12. If Ts is graded with length 1, the Hasse diagram is a
line.

Proof. Suppose s has n 1s and n 0s. Rotate s so that the first bit is a 1
and the last is a 0. This either has no impact on Ts, or inverts it. From
Proposition 3.10, s must consist of k 1s, then l 0s, n − k 1s, then n − l
0s, for some positive integer k and l.

Suppose l is greater than k. Consider the (2k + 1)th bit. This is a 0
which must pair to a 1 such that the substring between them must be
balanced, since bits in that substring cannot pair outside of it. Then
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it cannot pair to the first k 1s, and in fact it must pair to the 2lth
bit. Likewise, the (2k + i)th bit must pair to the (2l − i + 1)th bit, for
2k < 2k + i ≤ l. Since these bits always pair to each other, the corre-
sponding blocks are in each element of Ts. Removing these produces
a poset isomorphic to the original one. Thus we may assume with-
out loss of generality that l is smaller than or equal to k. Likewise, we
can rotate the first k bits, and by the same argument, we can assume
that n − k is smaller than or equal to l, and so on. Then we have that
k ≥ l ≥ n − k ≥ n − l ≥ k. Then they are all equal, and we may assume
without loss of generality that s consists of k 1s, k 0s, k 1s, then k 0s.

If all of the bits in the first series of 1s pairs to the first series of 0s,
then the ith bit for 1 ≤ i ≤ k pairs to the (2k − i + 1)th bit, as that is the
only bit for which the substring between the paired bits is balanced.
Likewise for the k bits in the second series of 1s. Call the element in
Ts that corresponds to this pairing, a. Note that if the first bit pairs
to the 2kth bit, then the first 2k bits pair within themselves, so it has
to give the above pairing. Then any other element of Ts must have
an underlying pairing which pairs the first bit to some other bit, and
the only possible choice is the 4kth bit.

Now I will prove the proposition by induction on k. The base case
is trivial, as it has only two partitions, one greater than the other.
Now suppose that it is true for positive integers less than k, for k
greater than 1. For each element of Ts not a, the first bit pairs to the
last. Since the 2kth bit can only pair to the first or (2k + 1)th bit, it
must pair to the (2k + 1)th bit. Now rotate the first bit. This inverts
the poset, but we will see that it does not matter. Now all such ele-
ments have the same two singletons, and the poset formed by those
is isomorphic to the poset formed from the string with those bits re-
moved, which then consists of k − 1 1s, k − 1 0s, k − 1 1s, then k − 1
0s. By our induction assumption, the Hasse diagram is a line. Then
the subposet of elements in Ts not a has a Hasse diagram which is an
inverted line, which is still a line.

Consider the relation of a to the other elements. It conforms to the
structure from Theorem 3.9, so it is a minimum. An element greater
than it must then have the same structure as a, except for two blocks
which are joined together. Let b be such an element. As noted above,
b must have an underlying pairing which pairs the first bit with the
last, and the 2kth bit with the (2k + 1)th bit. If the second bit pairs to
the second last bit, by a similar argument to the above, the (2k − 1)th
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bit pairs with the (2k + 2)th bit. Then there is a 2-block in b consisting
of the kth and (k + 1)th elements. But since the first and kth elements
forms a 2-block in a, b cannot be greater than a. Therefore the second
bit cannot pair to the second last bit. The second bit must then pair
to the (2k − 1)th bit. Each ith bit for 1 < i ≤ k must thus pair to the
(2k − i + 1)th bit, and likewise, each (2k + i)th bit for 1 < i ≤ k must
pair to the (4k− i+1)th bit. Therefore, this is the only possible pairing
for b. Indeed, b is greater than a, and so there is exactly one element
greater than a. From Lemma 3.11, b is greater than at most one other
element. The subposet of elements of Ts not a has a Hasse diagram
which is a line. Since it is connected, b is greater than some element.
From the above, it is greater than only one element, so b is at the
end of the line. As a is less than b and has no relation to the other
elements, Ts has a Hasse diagram which is a line. By induction, this
is true for all k. �

Example 3.13. Referring to Example 3.7, with s = 1011010010 we have
δ(s) = � 1 � 0 �. The only partition in NC1,2(� 1 � 0 �) is the partition
π0 in Figure 7, confirming Theorem 3.9 in this case. On the other
hand, with t = 111000111000 so that δ(t) = 1 � 0 1 � 0, there are two
partitions in NC1,2(1 � 0 1 � 0), pictured below in Figure 18. Hence,
T (111000111000) has two distinct minimal elements.

1 0 1 � 0�

1 0 1 � 0�

FIGURE 18. There are two partitions in NC1,2(1 �
0 1 � 0), pictured above. Also shown is the poset
T (111000111000), where they appear as the minima.

4. CONNECTEDNESS

A poset P is connected if for all a, b ∈ P there exists a sequence
a = x0, x1, . . . , xm = b in P such that for all 0 ≤ i ≤ m − 1 the elements
xi and xi+1 are comparable. Our goal in this section is to prove the
following.

Theorem 4.1. The poset Ts is connected.
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The proof will proceed by induction on the size of s with the initial
step being obvious. As any element lies above some minima it is
sufficient to show that any two minima are connected by a sequence
of comparable elements.

Definition 4.2. Two minima are immediately related if they differ in
only two blocks. Two minima m1 and m2 are related if there is a sequence
of minima starting with m1 and ending with m2 such that each two consec-
utive minima are immediately related.

By the proof of Theorem 3.9, two distinct minima m1 and m2 have
the same 1-blocks. If a 2-block a1 in m1 is not in m2, then the first
element of a1 is paired in m2 to another element x, and similarly the
second element is paired to some other element y. If they are imme-
diately related, then they cannot differ in any more blocks, so x is
paired to y in m1. Hence, immediately related minima have blocks
which are the same except for the configuration shown in Figure 19.

Lemma 4.3. Two immediately related minima have a join.

z

a

m

m

1

1

2

w

w xy(b)(a) z

(a) xy (c)

(c)

(b)

FIGURE 19.

Proof. In the lattice of partitions of n elements the join of two imme-
diately related minima m1 and m2 is as shown in Figure 20, with w, x,
y, and z in the same block as depicted, and where a, b, and c represent
some collections of other blocks in the partition.

(c)
w z y x

(a) (b)

FIGURE 20.

From the structure of m1, we know that elements in a and c pair
only to themselves, as m1 is non crossing. Similarly, from m2, we
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see that the same is true for b. So the above join is also the join in
NC(n). For each of the four elements w, x, y, and z, since they are
part of a 2-block in a minima, the two bits underlying each of them
are either both 1s or both 0s. Without loss of generality, suppose
that w is 1 in the constructed substring. Because z is paired to it in
m1, z is 0. Similarly, y is 1 and x is 0. Thus there is a pairing of the
original bitstring which maps to this partition, shown in Figure 21.
Therefore, it is a valid partition and is the join of the two minima in
Ts. Hence two immediately related minima are connected, and so
related minima are connected. �

11 01 0 001

FIGURE 21.

Lemma 4.4. Any two distinct minima in Ts are related.

Proof. Let δ(s) with the diamonds omitted be s1. Then s1 has at most
n/2 1s, so by induction assumption Ts1 is connected.

Every minima in Ts can be uniquely represented as an element in
Ts1 , as they correspond to the pairings of s1, which map bijectively to
the elements of Ts1 . For each minima m in Ts, let f (m) be the element
of Ts1 that corresponds to it.

Let m1 and m2 be two minima such that f (m1) covers f (m2) in Ts1 .
Then some block in f (m1) is broken up into two blocks in f (m2), either
one nested in the other, or not. The case where it is not nested is
shown in Figure 22.

1
underlying string s

FIGURE 22.

Thus m1 and m2 are immediately related, as they only differ in two
2-blocks as shown in in Figure 23. The other case is similar.



21

underlying string s
a b c d

a b c d a b c d

a b c d

1

1
underlying string s

FIGURE 23.

Since Ts1 is connected, for any minima m and m′ of Ts we can find a
sequence of elements in Ts1 starting with f (m) and ending with f (m′)
such that each one covers or is covered by the next. Therefore m and
m′ are related. �

I will be using the concept of a ”hill diagram” here, as a way of
representing a bitstring in a way that makes it easy to see which
1s can pair to which 0s. Suppose we have a balanced bitstring s of
length 2n. Consider an integer grid with the following points. (0,0)
is the first point, and the (i + 1)th point for 1 ≤ i ≤ 2n is (i, f (i)) where
f (i) is the number of 1s minus the number of 0s in the first i bits of s.

Definition 4.5. The hill diagram of s is the diagram formed by joining the
consecutive points above. The bit of s that corresponds to the ith edge is the
ith bit.

Notice that the final point must be (2n, 0), as the bitstring is bal-
anced.

Proposition 4.6. A 1 and 0 of a bitstring s is paired in some noncrossing
pairing of s if and only if their corresponding edges are between y = k and
y = k + 1 for some integer k.

Proof. If there is a noncrossing pairing of s such that the ith bit is
paired to the jth bit for i < j, then the bits in between them must
form a balanced substring, as they must pair to themselves in that
noncrossing pairing. If the ith bit is a 0, then the jth bit is a 1. Sup-
pose the (i + 1)th point is (i, k). Since the next j − i − 1 bits form a
balanced substring, the jth point is ( j − 1, k). Then the ith and jth
edges are between y = k and y = k + 1. Likewise if the ith bit is a 1,
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then the jth bit is a 0.

Now suppose that the ith and jth edges are between y = k and y =

k + 1 for some integer k. Suppose the ith bit is 0 and jth bit is 1. Then
the (i + 1)th point is (i, k) and the jth point is ( j − 1, k). Then the bits
between them forms a balanced substring, so there is a noncrossing
pairing of those bits. The rest of the bits are also balanced, so there is
a noncrossing pairing of those bits. Pair the ith and jth bit, and pick
a noncrossing pairing of the bits between them, and a noncrossing
pairing of the rest of the bits. Since each part pairs within itself,
no crossings are introduced, and this is a noncrossing pairing of s.
Likewise if the ith bit is 1 and the jth bit is 0. Then the result holds.

�

Note that we can view edges that are between some y = k and
y = k + 1 as being ”on the same level”.

Theorem 4.7. Up to switching 1s with 0s, the bitstring s associated with
such a poset of partitions Ts is unique.

Proof. First note that if we flip the 1s and 0s of a bitstring, the pair-
ings are exactly the same, so the poset is the same. Thus the poset
associated with a bitstring starting with a 0 is exactly the same as
that for the corresponding bitstring that starts with a 1. Suppose that
for bitstrings s and s′, Ts = Ts′ . Without loss of generality, let the first
element of s′ be 1. In the hill diagrams mentioned earlier, we know
that if there is a 1 and a 0 on the same level, there is a pairing which
pairs them. Each partition is mapped from some pairing of the bit-
string, so Ts corresponds to a set of pairings. Then s′ and s each have
this set of pairings. If we have a 1 on some level of the hill diagram,
s′ must have a 0 on the same level at a position x if there is some
pairing of s′ which pairs that 1 to position x. Conversely, if there is
no such pairing at that position, then there cannot be a 0 of that level
in that position. We can do a similar thing with 0s. By starting with
the first element, we can determine all the 0s on the first level. The
first element must have at least one possible pairing, so there is at
least one 0 on the first level. Picking that, we can determine all the
1s on the first level. Then we look at the first undetermined element
as shown in Figure 24.

If the element before that is a 1 (up) then it cannot be a 0 (down)
and vice versa, or else it would be on the same level on hence be
determined. So we can determine that element, and then all the el-
ements on that level. Since there are a finite number of elements,
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first undetermined element

01 01 1 0?

FIGURE 24.

this process must end eventually, giving us a complete, fully deter-
mined bitstring. Thus there is only one bitstring starting with 1 that
is mapped to any such poset of partitions. Any bitstring starting
with 0 that yields the same poset, when 1s and 0s are flipped, must
therefore be that bitstring. So the bitstring associated with such a
poset is uniquely determined. �

Note that there are many sets of partitions that are not mapped
onto by any bitstring, and that there are many distinct sets of par-
titions which are isomorphic as posets under refinement. For ex-
ample, as noted before, a rotation by two bits will produce a poset
which is isomorphic, even though the set of partitions is in general
different.

5. CONSTRUCTIBILITY

I will now show that Ts is constructible. Since Ts is a finite poset,
the posets in the results of this section will be taken to be finite
posets.

Definition 5.1. Define the class of constructible simplicial complexes re-
cursively as follows:

1) Every simplex including ∅ and {∅} is constructible.
2) If A and B are constructible complexes of dimension d and the inter-

section of A and B is a constructible complex of dimension d − 1, then the
union of A and B is constructible.

Constructible complexes were introduced by Hochster [8].

Definition 5.2. The order complex of a poset P is the simplicial complex
whose vertices are the elements of P, and whose faces are the chains of P.
[7]

Definition 5.3. A poset is constructible if its order complex is constructible.
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I will need the definition of recursive atom orderings [9], which I
will abbreviate as ”RA-ordering”.

Definition 5.4. A bounded poset P admits an RA-ordering if its length is
1, or its length is greater than 1 and there is an ordering a1, a2, ... , an of
the atoms of P such that:

1) For all j = 1, 2, ..., n the interval [a j, 1] admits an RA-ordering in
which the atoms of [a j, 1] that belong to [ai, 1] for some i < j come first.

2) For all i < j, if ai, a j < y then there is a k < j and an atom z of [a j, 1]
such that ak < z ≤ y.

Definition 5.5. Let A′ be A ∪ {0}.
Theorem 5.6. Let A and B be two join-semilattices such that A′ and B′

admit RA-orderings. Then (A × B)′ admits an RA-ordering.

Before proving this, I will first need the following lemma.

Lemma 5.7. Let A and B be as in the above theorem. For any x not 1 in A,
y not 1 in B, if a1, a2, ... , an, a′1, a′2, ... , a′n′ is an RA-ordering of [x, 1], and
b1, b2, ... , bm, b′1, b′2, ... , b′m′ is an RA-ordering of [y, 1], then there is an
RA-ordering of [(x, y), 1] such that the atoms (ai, y) and (x, b j) come first.

Proof. I will show this by induction on the size of [(x, y), 1]. The base
case is where x and y are coatoms of A and B respectively, and it is
true.

Order the atoms of [(x, y), 1] as follows. (a1, y), (a2, y), ... , (an, y),
(x, b1), (x, b2), ... , (x, bm), (a′1, y), (a′2, y), ... , (a′n′ , y), (x, b′1), (x, b′2), ...
, (x, b′m). I will show that it satisfies the definition of RA-orderings
part by part. For each (ai′ , y), the atoms of [(ai′ , y), 1] that are above
atoms of [(x, y), 1] that precede (ai′ , y) are exactly the elements (zi, y)
where the zi are the atoms of [ai′ , 1] that are above some ai′′ , i′′ < i′.
(If x is a coatom, then n ≤ 1, so either this part does not exist, or con-
sists only of (1, y). [(1, y), 1] is isomorphic to [y, 1], and so admits an
RA-ordering.) Since [(ai′ , y), 1] does not include (x, y), it has a smaller
size than [(x, y), 1]. From the induction assumption, it has an RA-
ordering beginning with the elements (zi, y). Also, if (ai′′ , y) and (ai′ , y)
for some i′′ < i′ are below some element (e1, e2), then ai′ and ai′′ are
below e1. Then ai′′′ for some i′′′ < i′ and an atom e′1 of [ai′ , 1] exist
such that ai′′′ < e′1 ≤ e1, so (ai′′′ , y) for some i′′′ < i′ and an atom (e′1, y)
of [(ai′ , y), 1] exist such that (ai′′′ , y) < (e′1, y) ≤ (e1, e2).
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Now consider each (x, b j′). Suppose there is an element e which is
above (x, b j′) and some atom z preceding it. If z is some (x, b j) then
we repeat the above argument. If z is some (ai, y), then let e = (e1, e2).
e1 ≥ x and ai, and e2 ≥ y and b j′ , so (ai, y) < (ai, b j′) ≤ e, and (ai, b j′)
is an atom of (x, b j′). Thus the second property holds. Since (ai, b j′)
covers (ai, y) and (x, b j′), it is in fact their join. Then the atoms of
[(x, b j′), 1] are all the (ai, b j′) as well as the elements (x, zi) where the
zi are the atoms of [b j′ , 1] that are above some b j′′ , j′′ < j′. The lat-
ter type does not exist if b j′ = 1, of course. In that case, [(x, 1), 1]
is isomorphic to [x, 1], so an ordering of the atoms exist with the
(ai, 1) coming first. Otherwise, we apply the induction assumption
to [(x, b j′), 1], as the ai can come first in an RA-ordering of [x, 1], and
the zi can come first in an RA-ordering of [b j′ , 1]. Then the first prop-
erty is also satisfied.

Now consider each (a′i′ , y). The same argument used above ap-
plies to this case as well, since there are the same two types of atoms
preceding it, those of the form (z, y) where z precedes a′i′ in the RA-
ordering of [x, 1], and (x, z), where the ”z”s are a set of atoms of [y, 1]
that can come first in its RA-ordering. The same is true of the atoms
of the form (x, b′j′). Then it is true for [(x, y), 1] as well, so it is true for
any pair of elements from A and B. �

Notice that if you set x = 0 and y = 0, this implies that products
of bounded join-semilattices admitting RA-orderings have an RA-
ordering that starts with atoms of the form (a, 0) and (0, b), where the
atoms a of the first bounded join-semilattice come first in some RA-
ordering, and likewise for b.

Now we are ready to prove the theorem.

Proof. Let an RA-ordering of A′ be α1, α2, ... , αk, and an RA-ordering
of B′ be β1, β2, ... , βl. Express the elements of (A × B) as pairs (c, d)
where c in A, d in B. Then the atoms of (A × B)′ are exactly the el-
ements (αi, β j) for some 1 ≤ i ≤ k, 1 ≤ j ≤ l. Now order these in
the following way. The first atom is (α1, β1), and for each (αi, β j), the
next atom is (αi−1, β j+1) if it exists, and if it does not, the next atom is
(αi′ , β j′) where i′ + j′ = i + j + 1 such that j′ is the smallest possible
number such that (αi′ , β j′) exists. This terminates at (αk, βl), and the
order is (α1, β1), (α2, β1), (α1, β2), (α3, β1), (α2, β2), ..., (αk, βl−1), (αk−1, βl),
(αk, βl).
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I will show that this is indeed an RA-ordering. Any atom z′ of
(A × B)′ is some (αi′ , β j′) for i′ and j′ satisfying 1 ≤ i′ ≤ k, 1 ≤ j′ ≤ l.
Then any atom z = (αi, β j) preceding z′ satisfies i + j ≤ i′ + j′. If both
atoms are below some element (e1, e2), then e1 > αi′ , αi, e2 > β j′ , β j.
If j < j′, (e1, e2) > (αi′ , β j). From the RA-ordering of B′, there exists
j′′ < j′ and an atom z0 of [β j′ , 1] such that β j′′ < z0 ≤ e2. Then (αi′ , β j′′)
is an atom preceding z′ in the ordering, and (αi′ , z0) is an atom of
[(αi′ , β j′), 1], such that (αi′ , β j′′) < (αi′ , z0) ≤ (e1, e2). On the other hand,
if j ≥ j′, we have that i < i′. By following the same argument, we get
the same result, so the second property of Definition 5.4 holds.

Suppose an atom of [(αi′ , β j′), 1] belongs to some [(αi, β j), 1] for a
(αi, β j) that precedes (αi′ , β j′) in the ordering. From the above argu-
ment, it is equal to or above some atom (thus is actually equal to)
(αi′ , z0) or (z0, β j′), which in turn is above some (αi′ , β j′′) or (αi′′ , β j′)
with j′′ < j′ and i′′ < i′ respectively. On the other hand, for each
atom z0 of [β j′ , 1] that is above some β j′′ for j′′ < j′, (αi′ , z0) is an
atom of [(αi′ , β j′), 1] that is above (αi′ , β j′′), which comes before z′ in
the ordering. Likewise for atoms of [αi′ , 1] which are above some
αi′′ for i′′ < i′. Then the atoms of [(αi′ , β j′), 1] which are above some
(αi, β j) that precedes (αi′ , β j′) in the ordering are exactly those (αi′ , z0)
for which z0 is an atom of [β j′ , 1] that is above some β j′′ for j′′ < j′,
and (z1, β j′) for which z1 is an atom of [αi′ , 1] that is above some αi′′

for i′′ < i′.

From the definition of RA-orderings, the atoms of [αi′ , 1] can be
ordered as a1, a2, ... , an, a′1, a′2, ... , a′n′ such that the atoms that
are above some αi′′ for i′′ < i′ are exactly the atoms a1, a2, ... , an.
Likewise, the atoms of [β j′ , 1] can be ordered as b1, b2, ... , bm, b′1, b′2,
... , b′m′ such that the atoms that are above some β j′′ for j′′ < j′ are
exactly the atoms b1, b2, ... , bm. Then the atoms of [z′, 1] which are
above some z that precedes z′ in the ordering are the atoms (αi′ , b j)
(ai, β j′), for positive integers i ≤ n, j ≤ m. Applying Lemma 5.7, these
can come first in an RA-ordering of [z′, 1]. Thus the first property is
also true, and therefore (A × B)′ admits an RA-ordering.

�

We can also have a variation of Lemma 5.7.
Let A and B be two posets such that A and B with a top elements

added are join semi-lattices. Let A′′ be A with a bottom and top el-
ement added, and likewise for B′′. Suppose A′′ and B′′ admit RA-
orderings.
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Lemma 5.8. For any x in A, y in B, if a1, a2, ... , an, a′1, a′2, ... , a′n′ is an
RA-ordering of [x, 1], and b1, b2, ... , bm, b′1, b′2, ... , b′m′ is an RA-ordering
of [y, 1], then there is an RA-ordering of [(x, y), 1] such that the atoms (ai, y)
and (x, b j) come first.

Note that (1, y) does not exist in the product of A and B as the 1
does not exist in A itself. Likewise for (x, 1). The proof then follows
the same proof in Lemma 5.7. The corresponding version of Theo-
rem 5.6 also follows in the same way.

A few more properties should be noted here.

Proposition 5.9. For any two elements in Ts with at least one element
greater than both, the join is the join of the two elements in NC(n). Likewise,
for any two elements in Ts with at least one element less than both, the meet
is the meet of the two elements in NC(n).

Proof. Let x and y be two elements of Ts such that both are less than
or equal to some z in Ts. Let the join of x and y be z′. Then z′ ≤ z.
Since Ts is convex in NC(n), z′ is in Ts. Any element greater than or
equal to both x and y in Ts is greater than or equal to z′, which itself
is greater than or equal to both x and y. Thus z′ is also the join of both
x and y in Ts. Likewise for meets. �

This means that any Ts with a top element is a join semilattice.
In fact, for any Ts, adding a top element if there are more than one
maximum, and adding a bottom element if there are more than one
minimum, transforms it into a lattice. This is because from the above
proposition, if there are elements above/below some x and y, the
join/meet exists, and if not, then the top/bottom element is the join/meet.

Let the poset of partitions of NC(2n) that have even block size be
NC2(2n). Then the atoms of NC2(2n)′ are non crossing pairings of 2n
elements. For such an atom z, the atoms of [z, 1] are obtained by join-
ing two such pairs into a block. If those two pairs are (a, d) and (b, c)
where a < b < c < d, then call such an atom of [z, 1] a nest-atom,
which I will abbreviate as ”N-atom”.

Theorem 5.10. NC2(2n)′ admits an RA-ordering.

Before proving this, I will need the following lemma.
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Lemma 5.11. For n > 1, NC(n) has an RA-ordering where the atoms are
ordered according to lexicographic order of the atom’s 2-block ordered as the
smaller element first then the larger.

Proof. I will prove this by induction on n. The base case is trivial.
Suppose it is true for any integer from 2 up to n−1. Then I will show
that it holds for n as well.

Take any atom z. Its 2-block is some (i, j) for i < j. Pick an atom z′

that precedes it. then its 2-block is some (i′, j′) for i′ < j′. If i′ = i, then
j′ < j, and its join is an atom of [z, 1], satisfying the second property.
This join then has a 3-block with elements i < j′ < j, with the rest
singletons. If i′ < i and i < j′ < j, then the join of z and z′ is above
some join of the above type, so again, the second property is satis-
fied. Otherwise, i′ < i and j′ ≤ i or j′ ≥ j. In this case, the join of
z and z′ is an atom of [z, 1] too, satisfying the second property. This
either forms a 3-block i′ < i < j, or two 2-blocks, (i, j) and (i′, j′). Each
of this is the join of z and z′ for some z′ preceding z.

Now I show that [z, 1] is isomorphic to a product of NC( j − i) and
NC(n − j + i). Map each element x in [z, 1] to a pair (a(x), b(x)) in
(NC( j − i),NC(n − j + i)) as follows. a(x) is obtained by deleting ele-
ments 1 to i − 1, and j to n. b(x) is obtained by deleting elements i to
j − 1. Since i and j are always in the same block, no other block can
contain elements inside and outside this pair. Any element which
maps to (a(x), b(x)) must therefore have exactly the blocks in a(x) and
b(x), except that the block containing i in a(x) must be joined to the
block containing j in b(x). Then this map is injective. By the same
argument, any pair (c, d) can be mapped to from some element in
NC(n). Since i and j are in the same block, it is in [z, 1]. Thus the map
is bijective.

The atoms of [z, 1] that are greater than some atom z′ preceding
z in the ordering are of the form (e, 0) and (0, f ). The e are atoms of
NC( j−i) where the 2-block is a pairing of the first element, i, with any
other element. This is a set that occurs first in the lexicographic order
of the atoms mentioned above, and by induction assumption, there
is an RA-ordering beginning with it. The f are atoms of NC(n− j + i)
whose 2-block has a first element that is before i. This is also a set that
comes first in the lexicographic order of the atoms mentioned above,
so by induction assumption, there is an RA-ordering beginning with
it. From the proof of lemma 5.7, there is an RA-ordering of [z, 1]
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that puts the set of atoms of the form (e, 0) and (0, f ) first. Thus this
satisfies the first property for RA-orderings, and hence is is true for
n as well. Then the result holds. �

Now we prove the theorem.

Proof. I will show that NC2(2n)′ admits an RA-ordering, and for each
atom z of NC2(2n)′ for n > 1, there is an RA-ordering of the atoms of
[z, 1] such that the N-atoms come first, by induction on n. The base
cases are n = 1 and n = 2, and are trivially true. Now suppose that
the above is true for integers less than n and greater than one, and I
will show that it holds for n as well.

I will use the atom ordering used in Wachs [9] for partitions with
even block size, and show that this in fact works for NC2(2n)′ too.
For each atom of NC2(2n)′, associate the following word to it. Order
each pair in increasing order of its two elements, and list the pairs
in lexicographic order. Order the atoms in lexicographic order of the
words. Let z be some atom of NC2(2n)′, and z′ be an atom that pre-
cedes it in the ordering. Suppose their words first differ on the kth
pair. Then the words up to that pair agree. For any word, if i is the
smallest positive integer yet to be listed up to the jth pair, then the
pair containing that must be the next to be listed, so the ( j + 1)th pair
consists of i and some higher element. Thus the kth pair of both z and
z′ must contain some common element a and some different higher
element. Suppose the kth pair of z is (a, b) and that of z′ is (a, b′).
Since z′ precedes z, b′ < b. Note that NC2(2n) is T(1100)n , and has a top
element, so NC2(2n)′ is a lattice. Then from Proposition 5.9, the join
of z and z′ exists and is their join in NC(2n). This join thus has one
block A that contains at least a, b, and b′.

For any pair with an element to the left of a, it appears in both z
and z′, so the elements between the two elements of the pair must
pair to themselves in both z and z′, and likewise for the other ele-
ments. Thus an element to the left of a cannot be in A. Then the
leftmost element of A is a. Notice that in either z or z′, the elements
between any two consecutive elements of A must pair to themselves,
or else there is a block that crosses A. Let the second leftmost ele-
ment of A be c. b is not the second leftmost element of A, and since
it pairs to a in z, c must pair to another element of A between a and
b in z. Let this be d. This is to the right of c and to the left of b, as
c is the second leftmost element of A. Let z′′ be the partition whose
pairs are the same as that of z, except that instead of the pairs (a, b)
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and (c, d), it pairs a with c and d with b. Since the elements between
any two consecutive elements of A must pair to themselves, this is
non crossing, and so z′′ is an atom of NC2(2n)′. Since c precedes b, z′′

precedes z in the ordering of atoms.

The join of z′′ with z consists of the other pairings of z together
with the block with elements a, c, d, b. Each 2-block is in a block of z,
so it is in some block in the join of z and z′. The block with elements
a, c, d, b is also in A, which is in the join of z and z′. Then the join of
z and z′′ is less than or equal to any element that is greater than or
equal to both z and z′. This is an atom of [z, 1], and z′′ precedes z in
the ordering, so this satisfies property two of the RA-ordering. No-
tice that this is an N-atom of [z, 1]. Then any atom of [z, 1] belonging
to some [z′, 1] for z′ preceding z is an N-atom.

Now I will show that all N-atoms of [z, 1] belong to some [z′′, 1]
for z′′ preceding z. Pick any N-atom of z. Then the blocks of that
N-atom are the pairs of z except for one block containing elements
a < b < c < d where (a, d) and (b, c) are pairs of z. Then let z′′ be
the atom whose pairs are the same as that of z, except that instead of
the pairs (a, d) and (b, c), it pairs (a, b) and (c, d). Then that N-atom
belongs to z′′. Their words first differ in the pairs (a, b) and (a, d), so
z′′ precedes z. Thus the atoms of [z, 1] that are above some atom of
NC2(2n)′ that precedes it in the ordering are exactly the N-atoms. By
our induction assumption, there is an RA-ordering of [z, 1] where the
N-atoms come first. Then the first property holds, and this ordering
of the atoms of NC2(2n)′ is an RA-ordering.

Now I will show that there is an RA-ordering of the atoms of [z, 1]
such that the N-atoms come first. Consider [z, 1]. We have two cases.
First, we can find some element i that pairs to some j greater than
i in z, such that their difference is greater than one, and (i, j) is not
(1, 2n). Second, this is not true, in which case every element from 2
up to 2n − 1 is paired with an adjacent element. If 2 is paired with 1,
then 3 is paired with 4, and so on, up to 2n − 1 and 2n. Then there
are no N-atoms and the assertion that there is an RA-ordering of the
atoms of [z, 1] such that the N-atoms come first, is trivially true. If 2
is paired to 3, then 4 is paired to 5, and so on, up to 2n− 2 and 2n− 1,
so 1 is paired to 2n. We deal with this case first, then return to the
first one. [z, 1] is isomorphic to NC(n), with the following bijection.
Map (1, 2n) to 1, and each (2i, 2i + 1) to i + 1 for each i from 1 to n − 1.
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Then any element in [z, 1] maps to one of NC(n), since any partition
of the pairs in z is a partition of n elements, and we can show that it
must be non-crossing by contradiction. Any crossing partition of n
elements would have some a < b < c < d where a and c are in one
block, and b and d are in another. If a is not 1, then an element of
[z, 1] that can map to it must be crossing, which is a contradiction.
Likewise if a is 1. Since each partition of the pairs must correspond
to a different partition of the n elements, it is injective. Every non-
crossing partition of n elements corresponds to an element of [z, 1], so
it is surjective. The N-atoms of [z, 1] then correspond to the partitions
with one 2-block (1, i) and the rest being 1-blocks, for each i from 2
to n. From lemma 5.11, there is an RA-ordering beginning with these.

Returning to the first case, note that there must be an even number
of elements between i and j. Now we map each element x in [z, 1]
to an element ( f (x), g(x)) in (NC2( j − i + 1),NC2(2n − j + i + 1)) as
follows. f (x) is obtained by deleting elements 1 to i − 1, and j + 1 to
n. g(x) is obtained by deleting elements i + 1 to j − 1. By a similar
argument to lemma 5.11, this is bijective. From the conditions on i
and j above, j − i + 1 and 2n − j + i + 1 are both less than 2n. Note
that the N-atoms of [z, 1] are the (α, g(z)) and ( f (z), β), where α is an
N-atom of [ f (z), 1], and β is an N-atom of [g(z), 1]. By our induction
assumption, there is an RA-ordering of [ f (z), 1] that starts with the
N-atoms of [ f (z), 1], and an RA-ordering of [g(z), 1] that starts with
the N-atoms of [g(z), 1]. Thus from the proof of lemma 5.7, there is an
RA-ordering of [z, 1] which starts with the N-atoms of [z, 1]. Hence
the result holds. �

Definition 5.12. The minima joins poset of a join-semilattice P, or MJ-
poset of P, is the poset that contains the minima of P along with all the
joins of any combination of its minima.

Proposition 5.13. For any balanced bitstring s, let s′ be the string formed
by deleting each pair of bits in positions 2k − 1 and 2k which are different,
for any integer k. Then the MJ-poset of Ts is isomorphic to the poset Ts′ .

Proof. The minima of Ts all have 1-blocks corresponding to where a
pair of bits in positions 2k − 1 and 2k are different. If an element of
Ts is the join of some minima, then from Proposition 5.9, it is also
the join of those elements in NC(n). Therefore, the elements of the
MJ-poset of Ts have 1-blocks in those positions too. Consider any s-
valid partition z with 1-blocks in those positions. For each block of z
of size greater than 1, each element in it corresponds to a pair of like
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bits in the bitstring s. In the pairing of s that corresponds to z, the
second bit of the first pair is paired to the first bit of the second pair,
and so on. The first bit of the first pair is also paired to the second
bit of the last pair. Thus if the first is a pair of 1s, then the second is
a pair of 0s, the third is a pair of 1s, and so on. If the first is a pair of
0s, then the second is a pair of 1s, and so on. Also, since the first and
last pair must be a pair of 1s and a pair of 0s, or vice versa, the block
is in fact of even size.

Let the partition a have the following form. a has the 1-blocks of
z. For each block of z of size greater than 1, a has 2-blocks which
includes the (2k − 1)th and 2kth element of that block of z. Likewise,
let the partition b have the 1-blocks of z. For each block of z of size
greater than 1, b has 2-blocks which includes the 2kth and (2k + 1)th
element of that block of z, as well as a 2-block which includes the
first and last element of that block of z. Each 2-block for both a and
b has one element corresponding to a pair of 1s in s, and the other
corresponding to a pair of 0s, so they are both s-valid, and hence are
minima of Ts. Both are refinements of z. Note that from the construc-
tion of a and b, the join of their restriction to any block of z is the
entire block. Then z is the join of a and b, so z is in the MJ-poset of Ts.
Note that if we consider the elements apart from those which corre-
spond to where a pair of bits in positions 2k−1 and 2k are different, it
corresponds to the bitstring s′. Thus the elements of the MJ-poset of
Ts are exactly those with 1-blocks corresponding to where a pair of
bits in positions 2k − 1 and 2k are different, and an s′-valid partition
of the rest. Then each element of the MJ-poset of Ts can be identified
with an element of Ts′ by removing the 1-blocks, and vice versa, so
the MJ-poset of Ts is isomorphic to Ts′ . �

Theorem 5.14. Suppose Ts is isomorphic to the MJ-poset of Ts and has one
maximum. Then T ′s admits an RA-ordering.

Proof. From Proposition 5.13 we may assume without loss of gener-
ality that s does not have a pair of bits in positions 2k−1 and 2k which
are different. Consider its top element, z It has blocks of even size,
and from Proposition 5.13, the bits corresponding to each element
in a block alternate between a pair of 1s and a pair of 0s. Since z is
the only maxima, any element of Ts must have blocks that are each
contained in some block of z. Number the blocks of z from 1 to k. Let
the bits corresponding to the ith block be some bitstring ti. Then we
can map elements in Ts to the product of all the Tti by letting the ith
coordinate be the partition of the elements in the ith block of z. This
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map is bijective, so Ts is isomorphic to the product of the Tti .

Now I will show that each Tti is isomorphic to some NC2(2l), where
2l is the size of the ith block of z. Each element of Tti is an element
of NC2(2l). Consider any element y of NC2(2l). Take any block of y.
Since y is non crossing, any block between the jth and the ( j + 1)th
element of y is entirely between these, so there are an even number
of elements between each of these. Since ti comprises of alternating
pairs of 1s and pairs of 0s, the jth and the ( j + 1)th element of y must
correspond to a pair of 1s and a pair of 0s, or vice versa. Thus each
block of y also has bits corresponding to each element in the block
alternating between a pair of 1s and a pair of 0s. Then the underlying
pairing pairs 1s to 0s, so y is ti-valid. Therefore, the partitions of Tti
are exactly those of NC2(2l), so they are isomorphic. Let the size of
the ith block of z be li. Then Ts is isomorphic to the product of the
NC2(2li). Each NC2(2li)′ admits an RA-ordering from Theorem 5.10.
From Theorem 5.6, T ′s admits an RA-ordering. �

Now I shall define a weaker version of an RA-ordering, by relax-
ing one of the requirements.

Definition 5.15. Let S be a subset of the atoms of a bounded poset P. P
admits an S -RA-ordering if its length is 1, or its length is greater than 1
and there is an ordering a1, a2, ... , an of the elements of S such that:

1) For all j = 1, 2, ..., n the interval [a j, 1] admits an R-RA ordering
where R is the set of atoms of [a j, 1] that belong to [ai, 1] for some i < j.

2) For all i < j, if ai, a j < y then there is a k < j and an atom z of [a j, 1]
such that ak < z ≤ y.

Definition 5.16. A bounded poset P admits a weak RA-ordering if it ad-
mits an S -RA-ordering, where S is the set of all the atoms of P.

Proposition 5.17. A bounded graded poset that admits an RA-ordering
also admits a weak RA-ordering.

Proof. The definition of a weak RA-ordering is weaker than that of
an RA-ordering. Using the same order on the atoms of P, the atoms
in the RA-ordering of each interval that appear after those in part
one of the definition cannot affect those before, and thus satisfies the
first part. The second property of weak RA-orderings is identical to
the second property of RA-orderings. �
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I will show that the upper or lower interval of Ts starting at any
point is isomorphic to some Ts′ , starting with the following proposi-
tion.

Proposition 5.18. Given any Ts and Tt, there exists Tu such that Tu is
isomorphic to the product of Ts and Tt.

Proof. Pick a lowest point in the hill diagram for s. If this is an even
number of bits from the left, then rotating the bits on the left of this
point to the right would produce a new string s′ so that Ts′ is isomor-
phic to Ts, and the hill diagram for s′ is never below 0. If there are an
odd number of steps, we can add 01 to that point without affecting
the structure of the poset, since those bits must then pair to them-
selves. The new lowest point is thus an even number of bits from the
left, so we can do the above, and obtain s′ so that Ts′ is isomorphic to
Ts, and the hill diagram for s′ is never below 0. Pick a highest point
in the hill diagram for t and repeat the above argument, obtaining
t′ so that Tt′ is isomorphic to Tt, and the hill diagram for t′ is never
above 0. Now concatenate s′ and t′ to produce a string u.

1s represented in the hill diagram as going from height x to x + 1
must pair to 0s represented as going from height x + 1 to x, so each
pairing occurs only within such height intervals [x, x + 1]. Thus there
can never be a pairing from the s′ part of the string to the t′ part of the
string. Any element w of Tu corresponds to a pairing of u which is a
pairing of s′ and a pairing of t′. These correspond to elements y of Ts′

and z Tt′ , so w is a concatenation of y and z, and can be represented
as a pair (y, z), where y is an element of Ts′ and z is an element of
Tt′ . Note that (y, z) ≤ (y′, z′) if and only if y ≤ y′ and z ≤ z′, so Tu is
isomorphic to the product of Ts′ and Tt′ , which is isomorphic to the
product of Ts and Tt. This gives the desired result. �

Theorem 5.19. For any Ts and an element a of Ts, the lower interval con-
sisting of all elements lesser than or equal to a is isomorphic to some Ts′ .
Likewise for the upper interval consisting of all elements greater than or
equal to a.

Proof. Consider the lower interval L consisting of all elements lesser
than or equal to a. a is the top element, with blocks B1, B2, ... , Bk. Let
the substrings underlying these blocks be s1, s2, ... , sk. There can be
no pairing between these substrings in any element of L, otherwise
it would not be less than or equal to a. Each element of L consists of
a refinement of a, and thus corresponds to non-crossing pairings of
s1, s2, ... , sk. On the other hand, any non-crossing pairing of s1, s2, ...
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, sk corresponds to an element of L, since it is identified with a non-
crossing pairing of s corresponding to an element of Ts whose blocks
are contained in B1, B2, ... , Bk. Similarly to the proof of Proposi-
tion 5.18, any element of L can thus be written as (x1, x2, ..., xk), where
each xi is an element of Tsi , and (x1, x2, ..., xk) is less than or equal to
(x′1, x′2, ..., x′k) if and only if xi ≤ x′i for all i. Thus L is isomorphic to the
product of all the Tsi . From Proposition 5.18, L is isomorphic to some
Ts′ . For the case of an upper interval, rotation of the string by one bit
inverts the whole poset, making it a lower interval. The same result
then follows. �

I will need the following results too.

Theorem 5.20. Let P be a poset. Suppose P′ admits an S -RA-ordering,
and an upper interval from any point except the bottom is constructible.
Let U be the poset formed from the union of all intervals [x, 1] for x in S .
Then U is constructible.

Proof. I will prove this by induction on the size of U. The base case
is with one element, which is trivial. Now suppose that the assertion
is true for posets smaller than U, and that U has more than one el-
ement. Let the S -RA-ordering of the elements in S be x1, x2, ... , xk.
For any j from 1 to k, let U j be the union of the intervals [xi, 1] for
i < j. Let S j be the set of atoms of [x j, 1] that belong to [xi, 1] for some
i < j. From the definition of S -RA-ordering, [x j, 1] admits an S j-RA-
ordering. Any point in the intersection of [xi, 1] with [x j, 1] for i < j is
greater than or equal to some element of S j by definition, while any
point above some element of S j is in some [xi, 1] for i < j. Thus the
intersection of U j with [x j, 1] is the poset A formed from the union
of all intervals [y, 1] for y in S j, which by the induction assumption
is constructible. U2 is simply [x1, 1], which is constructible. Each
[xi, 1] is constructible, and the intersection of each [xi, 1] and Ui for i
between 2 and k is constructible, so by induction U is constructible.
Thus is it true for U of this size, and by induction it is true for all
such U. �

This means that if P′ admits a weak RA-ordering, and an upper
interval from any point is constructible, then P is constructible. An-
other particular case is useful.

Proposition 5.21. Let P be a join-semilattice, and Q be its MJ-poset. If Q′

admits a weak RA-ordering, then so does P′.

Proof. Let a be the unique maximum of Q. For any x in Q′ less than
a, I will show by induction on the size of [x, a] that if [x, a] admits
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an S -RA-ordering, so does [x, 1]. The base case is a coatom of Q′.
[x, a] admits both an {a}-RA-ordering and a ∅-RA-ordering. [x, 1]
also trivially admits both an {a}-RA-ordering and a ∅-RA-ordering,
so the base case is true. Consider some such x such that it is true for
all such y with the size of [y, a] less than [x, a]. If [x, a] admits an S -
RA-ordering, following a similar argument to the proof of Theorem
5.20 and noticing that the joins of any elements in S are still in Q, we
see that [x, 1] admits an S -RA-ordering too. Thus by induction it is
true for all such x, so P′ admits a weak RA-ordering. �

Note that the converse is also true, as any weak RA-ordering of
P′ involves only joins of the atoms of P′ and is necessarily a weak
RA-ordering of Q.

Corollary 5.22. Let P be a join-semilattice such that an upper interval
from any point is constructible. Let Q be the MJ-poset of P. If Q′ has a
weak RA-ordering, P is constructible.

Proof. If P has a top element, from Proposition 5.21, P′ admits a weak
RA-ordering, so P is constructible from Theorem 5.20. If P does not
have a top element, then by adding a top element and using the same
argument, P with a top element added is constructible. But this is a
cone, so P is constructible. �

Proposition 5.23. If the MJ-poset of Ts is equal to Ts and has more than
one maximum, the inverted Ts cannot be equal to its MJ-poset.

Proof. From Proposition 5.13, Ts′ is isomorphic to the MJ-poset of Ts

which is equal to Ts, where s′ is the string formed from s by deleting
each pair of bits in positions 2k − 1 and 2k which are different, for
any integer k. We cannot possibly be changing the structure of Ts

by doing this, thus these bits must be pairing to themselves in all
pairings. We can also delete adjacent bits that must pair to each other
in every pairing without changing the structure of Ts, and repeat the
procedure. Since the bitstring is finite, it must terminate. Thus we
can assume without loss of generality that s has bits in positions 2k−1
and 2k which are the same, for every integer k, and that no adjacent
bits always pair to each other. Furthermore, we can assume that the
bitstring starts with 1s. Let the first 0 be in the (2k + 1)th position.
If we rotate the bit on the left to the right, the poset is inverted, and
the first 0 is in the 2kth position. This cannot be pairing to the 1 in
the (2k − 1)th position in all pairings, since we removed all such bits.
Let the rotated string be t. From Proposition 5.13, the MJ-poset of Tt

is isomorphic to Tt′ where t′ is the string formed from t by deleting
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each pair of bits in positions 2k−1 and 2k which are different, for any
integer k. Since this removes the (2k−1)th and 2kth bits which do not
always pair to each other, some pairings are lost. Thus the MJ-poset
of Tt is smaller than Tt itself, and the result follows. �

Let u be a sequence of n elements such that each element has one
of two colours. Let B(u) be the poset of noncrossing partitions of
the elements of u such that each block only includes elements of a
single colour. Let A(u) be B(u) with a top element added if there is
no unique maximum, and B(u) if there is. Let the colours be 1 and 2,
and let the colour of the first element be 1. Let the colour of an atom
of A(u) be the colour of the elements of its 2-block. Let S be the set of
atoms of A(u) whose 2-block contains the first element.

Lemma 5.24. For n > 1, A(u) has an S -RA-ordering.

Proof. Let A be the subposet of A(u) consisting of the bottom element,
the atoms in S , and any element of A(u) greater than an element in
S . A weak RA-ordering of A then corresponds to an S -RA-ordering
of A(u). Let B be the MJ-poset of A. The atoms in S are a2, a3, ... , ak

where ai is the atom whose 2-block contains 1 and the ith colour 1 el-
ement of u, and k is the number of colour 1 elements in u. The join of
ab1 , ab2 , ... , abl is then the partition with an l-block containing the 1st,
b1th, b2th, ... , and blth colour 1 elements, and 1-blocks everywhere
else. B then consists of all those partitions where any block with size
greater than 1 must contain the first colour 1 element.

Now map B to NC(k) in the following manner. If the block con-
taining the first colour 1 element contains the 1st, b1th, b2th, ... ,
and blth colour 1 elements, this partition maps to the partition of
NC(k) with a block containing the 1st, b1th, b2th, ... , and blth ele-
ments, with 1-blocks everywhere else. Since distinct elements in B
have different blocks containing the first element, this is an injective
map. Then B is isomorphic to a subposet of NC(k). The atoms of S
map to those with a 2-block containing the 1st and ith elements for
1 < i ≤ k, with 1-blocks everywhere else. Let this set of atoms be
S ′. From the proof of Proposition 5.17 and Lemma 5.11, there is a
weak RA-ordering starting with those atoms of NC(k). Then there is
an S ′-RA-ordering, which corresponds to an S ′-RA-ordering of the
image of B in the map, which corresponds to a weak RA-ordering of
B. Then by Proposition 5.21, this is a weak RA-ordering of A, which
then gives an S -RA-ordering of A(u). �
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Let t be a balanced bitstring of length 2n. Let NC2(t) be the poset
of noncrossing partitions of the bits of t such that each block consists
of an even number of alternating 1s and 0s. (ie. either 1010...10 or
0101...01.)

Theorem 5.25. NC2(t)′ with a top element admits a weak RA-ordering.

Proof. The proof follows a similar argument to that in Theorem 5.10.
Let NC2(t) with a top element be A. I will show that A′ admits a weak
RA-ordering, and for each atom z of A′ for n > 1, there is a S z-RA-
ordering of the atoms of [z, 1] where S z is the set of N-atoms of [z, 1],
by induction on n. The base cases are n = 1 and n = 2, and are triv-
ially true. Now suppose that the above is true for integers less than
n and greater than one, and I will show that it holds for n as well.

Again, I will use the atom ordering used in Wachs [9] for partitions
with even block size. For each atom of A′, associate the following
word to it. Order each pair in increasing order of its two elements,
and list the pairs in lexicographic order. Order the atoms in lexico-
graphic order of the words. Let z be some atom of A′, and z′ be an
atom that precedes it in the ordering. Suppose their words first dif-
fer on the kth pair. Then the words up to that pair agree. For any
word, if i is the smallest positive integer yet to be listed up to the
jth pair, then the pair containing that must be the next to be listed,
so the ( j + 1)th pair consists of i and some higher element. Thus the
kth pair of both z and z′ must contain some common element a and
some different higher element. Suppose the kth pair of z is (a, b) and
that of z′ is (a, b′). Since z′ precedes z, b′ < b. Let t′ be t with every
bit doubled. (ie. the 2i − 1 and 2i bits of t′ is the same as the i bit in
t.) Note that NC2(t) is Tt′ , and has joins with an added top element as
well as meets with an added bottom element, so A′ is a lattice. Then
from Proposition 5.9, if the join of z and z′ exists in NC2(t), it is their
join in NC(2n). Suppose it does exist. This join would have one block
B that contains at least a, b, and b′.

For any pair with an element to the left of a, it appears in both z
and z′, so the elements between the two elements of the pair must
pair to themselves in both z and z′, and likewise for the other ele-
ments. Thus an element to the left of a cannot be in B. Then the
leftmost element of B is a. Notice that in either z or z′, the elements
between any two consecutive elements of B must pair to themselves,
or else there is a block that crosses B. Let the second leftmost ele-
ment of B be c. b is not the second leftmost element of B, and since
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it pairs to a in z, c must pair to another element of B between a and
b in z. Let this be d. This is to the right of c and to the left of b, as
c is the second leftmost element of B. Let z′′ be the partition whose
pairs are the same as that of z, except that instead of the pairs (a, b)
and (c, d), it pairs a with c and d with b. Since the elements between
any two consecutive elements of B must pair to themselves, this is
non crossing. If a is 1, c is 0, d is 1, and b is 0, and the reverse if a is
0. Thus z′′ is an atom of A′. Since c precedes b, z′′ precedes z in the
ordering of atoms.

The join of z′′ with z consists of the other pairings of z together
with the block with elements a, c, d, b. Each 2-block is in a block of z,
so it is in some block in the join of z and z′. The block with elements
a, c, d, b is also in B, which is in the join of z and z′. Then the join of
z and z′′ is less than or equal to any element that is greater than or
equal to both z and z′. This is an atom of [z, 1], and z′′ precedes z in
the ordering, so this satisfies property two of the weak RA-ordering.
Notice that this is an N-atom of [z, 1]. Then any atom of [z, 1] belong-
ing to some [z′, 1] for z′ preceding z is an N-atom.

Now I will show that all N-atoms of [z, 1] belong to some [z′′, 1]
for z′′ preceding z. Pick any N-atom of z. Then the blocks of that
N-atom are the pairs of z except for one block containing elements
a < b < c < d where (a, d) and (b, c) are pairs of z. Then let z′′ be
the atom whose pairs are the same as that of z, except that instead of
the pairs (a, d) and (b, c), it pairs (a, b) and (c, d). Then that N-atom
belongs to z′′, since a and b are different types of elements, and so
are c and d. Their words first differ in the pairs (a, b) and (a, d), so z′′

precedes z. Thus the atoms of [z, 1] that are above some atom of A′

that precedes it in the ordering are exactly the N-atoms.

If the join of z and z′ does not exist in NC2(t), then their join in A′ is
the top element. It is above any N-atom, so if [z, 1] has any N-atoms,
the second property of weak RA-orderings is satisfied. I will show
this by contradiction. Suppose [z, 1] has no N-atoms. Without loss
of generality, assume that a is 1. Then b is 0. There is at least one
element between them, since b′ is between them. Consider the ele-
ment directly to the right of a, and let this be a′. Let a′ be paired to
b′′ in z. If a′ is 0, then a, a′, b′′, b forms a 4-block with alternating
1s and 0s, and does not cross any other block, so it is an N-atom of
[z, 1], which cannot happen. Then a is 1. By similar argument, the
element to the right of b′′ is either b or is also a 1. Then the elements
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from a to b look like 11...01...0 ... 1...00, where each ... is a balanced
bitstring, and for each 1...0, the 1 pairs to the 0 in z. By similar ar-
gument, each 1...0 sequence must also have this structure, or we can
find an N-atom. Now consider the bitstring between the first 1 and
any 0 other than the last in this sequence. I will show by induction
on the length of the string that this cannot be balanced, and has more
1s than 0s. The base case is 1100, with the first 1 pairing to the first 0,
and is trivial. Suppose it holds for shorter strings. Suppose that the
0 the first 1 pairs to is in the kth 1...0 sequence. Each 1...0 sequence is
balanced, so the difference between the number of 1s and the num-
ber of 0s is the difference between the number of 1s and the number
of 0s in the kth 1...0 sequence up to but not including the 0 in ques-
tion. By induction assumption, there are more 1s than 0s between
the first 1 and that 0. Adding the first 1 retains the conclusion, so it
is true for all such sequences. Thus a cannot pair to b′ between a and
b, a contradiction. Thus the second property of weak RA-orderings
is satisfied in all cases.

By our induction assumption, there is a S z-RA-ordering of [z, 1].
Then the first property holds, and this ordering of the atoms of A′ is
a weak RA-ordering.

Now I will show that there is a S z-RA-ordering of the atoms of
[z, 1]. Consider [z, 1]. We have two cases. First, we can find some
element i that pairs to some j greater than i in z, such that their dif-
ference is greater than one, and (i, j) is not (1, 2n). Second, this is not
true, in which case every element from 2 up to 2n − 1 is paired with
an adjacent element. If 2 is paired with 1, then 3 is paired with 4,
and so on, up to 2n − 1 and 2n. Then there are no N-atoms and the
assertion that there is a S z-RA-ordering of the atoms of [z, 1] is triv-
ially true. If 2 is paired to 3, then 4 is paired to 5, and so on, up to
2n − 2 and 2n − 1, so 1 is paired to 2n. We deal with this case first,
then return to the first one. Let u be an n element string with two
colours such that the first element is colour 1, and the ith element for
i > 1 is colour 1 if the (2i − 2)th bit of t is different from the 1st bit,
and colour 2 if it is the same. Let A(u) be as in Lemma 5.24 Map [z, 1]
to A(u) as follows. 1 goes to 1. Otherwise, map (1, 2n) to 1, and each
(2i, 2i + 1) to i + 1 for each i from 1 to n − 1. Any partition of the pairs
in z is a partition of n elements, and is noncrossing from the proof of
Theorem 5.10. Any block of pairs in [z, 1] is of the same colour when
mapped to A(u). Then any element in [z, 1] maps to one of A(u). Since
each partition of the pairs must correspond to a different partition of
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the n elements, it is injective. Every partition of A(u) is mapped to
by an element of [z, 1], as a block of the same colour corresponds to
a block of alternating 1s and 0s in NC2(t)′, so it is surjective. There-
fore [z, 1] is isomorphic to A(u). The N-atoms of [z, 1] then map to the
partitions with one 2-block (1, i) and the rest being 1-blocks, for each
i from 2 to n such that i is of colour 1. From lemma 5.24, there is an
RA-ordering beginning with these.

Returning to the first case, note that there must be an even number
of elements between i and j. Now we map [z, 1] to (NC2(t′),NC2(t′′))
with a top element added, as follows. t′ is obtained from t by deleting
elements 1 to i − 1, and j + 1 to n. t′′ is obtained from t by deleting
elements i + 1 to j − 1. 1 maps to 1. For x not 1 in [z, 1], it maps to
( f (x), g(x)), where f (x) is obtained from x by deleting elements 1 to
i−1, and j+1 to n. g(x) is obtained from x by deleting elements i+1 to
j− 1. By a similar argument to lemma 5.11, this is bijective. From the
conditions on i and j above, j− i+1 and 2n− j+ i+1 are both less than
2n. Note that the N-atoms of [z, 1] are the (α, g(z)) and ( f (z), β), where
α is an N-atom of [ f (z), 1], and β is an N-atom of [g(z), 1]. By our
induction assumption, there is a S f (z)-RA-ordering of [ f (z), 1], and
a S g(z)-RA-ordering of [g(z), 1]. Following the proof of Lemma 5.8,
there is a S z-RA-ordering of [z, 1], as the ordering extends over such
a product of posets. Hence the result holds. �

Theorem 5.26. Let Ts be isomorphic to the MJ-poset of Ts. Then T ′s with
an added top element admits a weak RA-ordering.

Proof. From Proposition 5.13, we may assume that s consists of a con-
catenation of 11 and 00 sequences. Any element in Ts must have
blocks whose underlying string consists of alternating 11 and 00
pairs, otherwise a 0 would pair to a 0 or a 1 would pair to a 1 in
the underlying pairing. Likewise, any such partition is s-valid and
is then a member of Ts. Thus Ts has exactly the form in Theorem 5.25,
so T ′s with an added top element admits a weak RA-ordering. �

Now I come to the main theorem of this section.

Theorem 5.27. Ts is constructible.

Proof. I will show this by induction on the size of Ts. The base case is
one element, and is trivial. Notice that since Ts is convex in NC(n), if
Ts has one minimum and one maximum, then it is isomorphic to an
interval of NC(n). Such a Ts would then have an RA-ordering, since
intervals in NC(n) have an RA-ordering. Then Ts is CL-shellable [9],
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and hence is constructible.

Suppose that Ts has more than one minimum. Then all upper in-
tervals beginning at some point in Ts is of a smaller size than Ts.
From Theorem 5.19, it is isomorphic to some Ts′ , and by induction
assumption, it is constructible. Now further suppose that the MJ-
poset A of Ts has a unique maximum. From Proposition 5.13 and
Theorem 5.14, A′ admits an RA-ordering. From Proposition 5.17, A′

admits a weak RA-ordering. Let T be Ts if it has a top element, and
Ts with a top element added otherwise. Since A has a unique max-
imum, adding a top element to Ts would not add any elements to
its MJ-poset. So the MJ-poset of Ts is still A. From Proposition 5.21,
T ′ admits a weak RA-ordering. Since cones of constructible posets
are constructible, upper intervals from any point of T ′ are also con-
structible. From Theorem 5.20, T is constructible. Then Ts is con-
structible.

If on the other hand A has more than one maximum, let B be A
with a top element added. Ts cannot then have a top element, so T
has a top element added. Then B is the MJ-poset of T . From Theorem
5.26, B′ admits a weak RA-ordering. Then from Proposition 5.21, T ′

admits a weak RA-ordering. Following the above, Ts is constructible.

The remaining case is where Ts has one minimum and more than
one maximum. Inverting Ts gives us Ts′ , where s′ is s with one bit
rotated. This then has more than one minimum, and from the above,
it is constructible. Inverting the poset does not change its structure,
thus Ts is constructible. Thus the result holds. �

Conjecture 5.28. Ts is contractible.

A contractible complex can be built in much the same recursive
manner as in Definition 5.1, except that the base case is different.
Since the base case is true in Ts, the above approach should work to
prove contractibility as well. Note that from Proposition 3.12, this is
true when Ts is graded with length 1.
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