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1 Spectral Decimation

1.1 Preliminaries

The goal of this paper is to extend some of the fractal analysis that has been
developed on the Sierpinski Gasket (SG2) to new fractal domains. First we
want to define a new fractal, SG3. The first level of SG3 is shown below. The
fractal is then generated in the same way as SG2.

Figure 1: Building block for SG3

Just as with SG2 it is possible to define a Laplacian on each approximation
to SG3 (and in the process define energy) and derive a pointwise formula for
it. The pointwise formula for the Laplacian will be the same as the one for
SG2 except for vertices where three cells meet. Here it is necessary to scale
everything by 2/3. This factor arises because when a function is integrated over
SG3, a vertex neighboring three cells is given 3/2 as much weight in the integral
as a vertex neighboring only two cells. An easy computation shows that the
energy renormalization factor is 7/15. We also have a measure renormalizaton
factor of 1/6. Together, these will give a Laplacian renormalization factor of
90/7. Finally, a Laplacian on SG3 can be defined as the renormalized limit of
the Laplacian on level m. The first thing we want to study are eigenfunctions
for this Laplacian. Our first step will be to derive a spectral decimation process
similar to the one already defined on SG2.

1.2 Eigenfunction extension algorithm

The first problem is derive an eigenfunction extension algorithm on SG3. That
is, given an eigenfunction on level m, we want to extend it to one on level m+1.
This is a local process and it is only necessary to solve the problem for one cell.
If we can come up with an extension algorithm for Figure 2, we can extend it
by linearity to get an algorithm for a cell with any values on the boundary.

If we want Figure 2 to be an eigenfunction for λ, we must satisfy the following
four equations:

(4− λ)x = 1 + x + y + w (1)
(4− λ)y = x + z + w (2)
(4− λ)z = y + z + w (3)

(4− λ)w =
4
3
(x + y + z) (4)
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Figure 2: A function on one cell

If λ 6= 4 then w =
4

3(4− λ)
(x + y + z). Then add equations 1-3 and get

(4− λ)(x + y + z) = 1 + 2(x + y + z) +
4

4− λ
(x + y + z)

Using this we get:

x + y + z =
4− λ

4− 6λ + λ2

Substitute this into equation 4 and when λ 6= 3±
√

5 obtain:

w =
4

3(4− 6λ + λ2)

Now add y to both sides of equation 2 and use the equations derived for w
and x + y + z and:

(5− λ)y =
16
3 − λ

4− 6λ + λ2

and thus when λ 6= 5

y =
16− 3λ

3(5− λ)(4− 6λ + λ2)

Now subtract z from both sides of equation 3 and use the computed values
for w and y and:

(3− λ)z = y + w =
36− 7λ

3(5− λ)(4− 6λ + λ2)

Thus, provided λ 6= 3, we have:

z =
36− 7λ

3(3− λ)(5− λ)(4− 6λ + λ2)
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Similarly

x =
1

3− λ
+

36− 7λ

3(3− λ)(5− λ)(4− 6λ + λ2)

Also, when λ = 4, x = y = w = −1
3 and z = 2

3 satisfy the system of
equations, so λ = 4 is not a forbidden eigenvalue. From all of this, we get the
following eigenfunction extension algorithm (in cases when λ 6= 5, 3, or 3±

√
5):
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Figure 3: A general function on one cell

w =
4

3(4− 6λ + λ2)
(a + b + c)

x = (
1

3− λ
+

36− 7λ

3(3− λ)(5− λ)(4− 6λ + λ2)
)a

+
16− 3λ

3(5− λ)(4− 6λ + λ2)
b

+
36− 7λ

3(3− λ)(5− λ)(4− 6λ + λ2)
c

We get similar formulas for y and z.

1.3 Eigenvalues associated with the eigenfunction exten-
sion algorithm

The next step is to figure out which eigenvalues we can use with the eigenfunc-
tion extension algorithm. That is, if fm is an eigenfunction on level m with
eigenvalue λm, we want to find an eigenvalue λm+1 such that when we extend
fm to fm+1 using λm+1 in the eigenfunction extension algorithm, fm+1 is an
eigenfunction for λm+1. The only vertices where fm+1 could possibly not satisfy
the eigenfunction equations are vertices where two or three cells meet. We will
solve the problem in the case of two cells meeting. It is easy to check that our
solution also works for where three cells meet.
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Figure 4: Two cells meeting

From Figure 4, we see that we need to find λm+1 satisfying

(4− λm+1)e = w + x + y + z

.
Using the eigenfunction extension algorithm derived above, we can write x

,y ,z, and w in terms of λm+1, a, b, c, d, and e. Doing this, we get

x + y + z + w =
84− 32λm+1 + 3λ2

m+1

3(3− λm+1)(5− λm+1)(4− 6λm+1 + λ2
m+1)

(a + b + c + d)

+4(
1

3− λm+1
+

36− λm+1

3(3− λm+1)(5− λm+1)(4− 6λm+1 + λ2
m+1

)e

Since a + b + c + d = (4− λm)e we can rewrite this as:

(4− λm+1)e = (4− λm)(
84− 32λm+1 + 3λ2

m+1

3(3− λm+1)(5− λm+1)(4− 6λm+1 + λ2
m+1)

)e +

4(
1

3− λm+1
+

36− λm+1

3(3− λm+1)(5− λm+1)(4− 6λm+1 + λ2
m+1

)e

Then cancel the e’s1 and simplify and we obtain:

λm =
3(λm+1 − 5)(λm+1 − 4)(λm+1 − 3)λm+1

3λm+1 − 14
(5)

1We can assume we chose a point where e 6= 0; otherwise we would be extending the
constant function 0
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In this last calculation, we cancel λ−6 from both sides so it is thus necessary
that λm+1 6= 6. This gives us our last “forbidden” value. The following two
graphs show the derived function and its inverse:
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Figure 5: The graph of the function in equation 5 and its inverse

Recall that for the five forbidden eigenvalues 3, 5, 3 ±
√

5, and 6 that the
eigenfunction extension algorithm will not work. If f is an eigenfunction on
level m corresponding to eigenvalue λ, then using the inverse to formula 5 (this
inverse can be explicitly computed), we get four potential eigenvalues to use with
the eigenfunction extension formula in order to extend f to an eigenfunction on
level m + 1. For each of these four potential eigenvalues that is not a forbidden
value, we can use the eigenfunction extension algorithm to get an eigenfunction
on level m+1. From the second graph in Figure 5, it is easy to see that only the
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eigenvalues 0 and 6 are mapped to forbidden values. The eigenvalue 0 maps to
0, 3, 4, and 5. Since 3 and 5 are forbidden eigenvalues, if λ = 0, f can only be
extended in two ways. Similarly, 6 maps to 3±

√
2 and 3±

√
5 and since 3±

√
5

are forbidden values, if λ = 6, f can only be extended in two ways. Finally, for
any other value of λ, f can be extended in four ways.

1.4 Eigenfunctions not arising from eigenfunction exten-
sion algorithm

For eigenvalues λ = 3, 5, 3 ±
√

5, and 6, we saw that the eigenfunction ex-
tension algorithm did not work. However, there are eigenfunctions with these
eigenvalues–they just cannot be obtained using the eigenfunction extension algo-
rithm. We can still completely describe all eigenfunctions with these forbidden
eigenvalues. We will do this for the particular cases of Dirichlet and Neumann
eigenfunctions. First, we describe the Dirichlet eigenfunctions appearing on level
1. If the necessary equations are solved on level 1, the Dirichlet eigenfunctions
illustrated in Figure 6 are found. These eigenfunctions can be rotated to give
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Figure 6: Dirichlet eigenfunctions on level 1 of SG3 for eigenvalues 6, 3 ±
√

5,
5, and 3

additional eigenfunctions. Doing this gives us 1, 1, 2 and 2 linear independent
eigenfunctions for eigenvalues 6, 3±

√
5, 5, and 3 respectively.

There are no eigenfunctions of eigenvalue 3 ±
√

5 on any level other than
level 1. For eigenvalues 3, 5, and 6, there are Dirichlet eigenfunctions that are
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“born” on each level. We can completely describe these eigenfunctions. In or-
der to do this, first we need to consider the Neumann eigenfunctions on level
1. The best way to compute these is to seperately find the symmetric and
anti-symmetric eigenfunctions. First observe that the Dirichlet-6 eigenfunction
on level 1 shown in Figure 6 is also a Neumann anti-symmetric eigenfunction.
Additionally, we find the Neumann anti-symmetric eigenfunction shown in Fig-
ure 7. The Neumann symmetric eigenfunctions on level 1 are shown in Figure 8.

Figure 7: Neumann anti-symmetric eigenfunction for eigenvalues 3±
√

2

After considering rotations, we see that together these Neumann eigenfunctions

Figure 8: Neumann symmetric eigenfunctions for eigenvalues 6, 0, 4, and 3±
√

2

generate a 10-dimensional space as desired. The multiplicities for eigenvalues 6,
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0, 4, and 3±
√

2 respectively are 4, 1, 1, and 4 (2 for each).
We can use the eigenfunctions we derived on level 1 to construct eigenfunc-

tions with forbidden eigenvalues on higher levels. The constructions we will
give are general; that is they work for any level of our approximation to SG3.
Furthermore, each eigenfunction will be supported in only a small part of the
domain (this will be made more explicit later). For this reason, we can use the
same procedure to construct Neumann and Dirichlet eigenfunctions. We just
need to be careful near the boundary.

For eigenvalue 6, we can construct an eigenfunction that is equal to the
Dirichlet-6 eigenfunction on one cell of level m and zero elsewhere. This will be
both a Dirichlet and Neumann eigenfunction. It is clear that all of these eigen-
functions are linearly independent. Next, notice that the symmetric Neumann-
6 eigenfunction can be rotated to give three linearly independent Neumann-6
eigenfunctions. Around any vertex v on level m, we can construct an eigenfunc-
tion on level m+1 that is equal to one of the symmetric Neumann-6 eigenfunc-
tions on each cell containing v and equal to zero on each cell not containing v.
Notice that each one of these eigenfunctions is non-zero on exactly one vertex
of level m. Thus, it is easy to see that these eigenfunctions together with the
first set are linearly independent. Also, each one of these eigenfunctions will
be Neumann and all but the three that are non-zero on the boundary will be
Dirichlet. Thus, on level m + 1 we have Tm + Vm − 3 Neumann and Tm + Vm

Dirichlet eigenfunctions where Tm and Vm are respectively the number of cells
and vertices on level m.

For eigenvalues 3 and 5, the first thing we need is an anti-symmetric Dirichlet
eigenfunction on level 1. We already have symmetric Dirichlet eigenfunctions
on level 1; if we reflect these eigenfunctions about an axis of non-symmetry
and subtract the result, we get anti-symmetric eigenfunctions. The result is
exhibited in Figure 9. Around any cycle of level m we can connect these eigen-

Figure 9: Anti-symmetric Dirichlet eigenfunctions for eigenvalues 3 and 5

functions like batteries to obtain a new eigenfunction. This concept is illustrated
in Figure 10.

Thus, if Cm is the number of cycles on level m, on level m + 1 we get
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Figure 10: A eigenfunction for eigenvalue 3 obtained by connecting eigenfunc-
tions like batteries

Cm eigenfunctions each for eigenvalues 3 and 5. It can be checked that these
eigenfunctions are linearly independent. Additionally, in the Dirichlet case, we
can string the eigenfunctions in Figure 9 along the sides of the fractal to obtain
two additional eigenfunctions. The multiplicities of all these new eigenfunctions
are summarized in Table 1.

Table 1: Multiplicities of eigenvalues not coming from spectral decimation
λm+1 Dirichlet Multiplicity Neumann Multiplicty
3 or 5 Cm + 2 Cm

6 Tm + Vm − 3 Tm + Vm

We know that on level m we should have Vm Neumann and Vm − 3 Dirchlet
eigenfunctions. Now we want to check that our spectral decimation process
actually gives this many eigenfunctions. The first step is to give some simple
recursive formulas for Tm, Cm, and Vm. We easily see that:

Tm = 6Tm−1 (6)
Cm = Cm−1 + 3Tm−1 (7)
Vm = Vm−1 + 7Tm−1 (8)

Now we will verify that the spectral decimation gives all of the Dirchlet
eigenfunctions. We will do this by induction on the level m. On level 1, we have
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given all 7 (counting multiplicities) eigenfunctions. On level 2, we get 26 eigen-
functions by extending the 7 eigenfunctions on level 1 with the eigenfunction
extension algorithm. Using Table 1, we see that we also get 5 eigenfunctions
each for eigenvalues 3 and 5 and 13 eigenfunctions for eigenvalue 6. Together
this gives us 49 Dirichlet eigenfunctions for level 2. It is easy to see that Vm− 3
is indeed 49. Now assume that the spectral decimation process gives us Vm − 3
Dirichlet eigenfunctions on level m (with m > 3). We want to show that we get
Vm+1 − 3 eigenfunctions on level m + 1. From Table 1, we know that on level
m + 1 we will have, in total, 2Cm + Tm + Vm + 1 eigenfunctions of eigenvalues
3, 5, or 6. Next note that there will never be any Dirichlet eigenfunctions with
eigenvalue 0. Thus, for every eigenfunction on level m not of eigenvalue 6, we
will get four eigenfunctions on level m + 1 from the eigenfunction extension al-
gorithm. For each eigenfunction of eigenvalue 6, we will get two eigenfunctions
on level m + 1. Since there are Tm−1 + Vm−1 − 3 eigenfunctions of eigenvalue 6
on level m, we get 4Vm− 12− 2(Tm−1 +Vm−1− 3) = 4Vm− 2Tm−1− 2Vm−1− 6
eigenfunctions on level m+1 from the eigenfunction extension algorithm. Thus,
we want to show that:

Vm+1 − 3 = (2Cm + Tm + Vm + 1) + (4Vm − 2Tm−1 − 2Vm−1 − 6)

Replacing Vm+1 with Vm + 7Tm and collecting terms we get

6Tm = 4Vm + 2Cm − 2Vm−1 − 2Tm−1 − 2

Now use the recursive formulas for Tm, Vm, and Cm to rewrite this as

36Tm−1 = 4Vm−1 + 28Tm−1 + 2Cm−1 + 6Tm−1 − 2Vm−1 − 2Tm−1 − 2

Simplified this becomes

2Tm−1 = Vm−1 + Cm−1 − 1

This final formula is easy to prove for all m by induction. This completes the
proof and shows that the spectral decimation method does indeed give all of the
Dirichlet eigenfunctions. A similar computation shows that spectral decimation
will give all of the Neumann eigenfunctions.

1.5 Spectral Decimation on New Gaskets

We now have a working spectral decimation method for two self-similar fractals:
SG2 and SG3. Our next step is to show how we can use this to derive a
spectral decimation method on a certain class of non-self-similar gaskets. Given
a sequence (b1, b2, . . .) of 2′s and 3′s, we can define a new fractal in an obvious
way; at each stage, if bi = 2 replace each triangle with the level 1 approximation
to SG2 and if bi = 3 use the SG3 approximation. Thus, (2, 2, . . .) corresponds
to SG2 and (3, 3, . . .) corresponds to SG3 and any other sequence corresponds
to something inbetween.

11



Just as with SG2 and SG3, it is possible to define a Laplacian on a approx-
imation to any of these new gaskets. It can be verified that this new Lapla-
cian will have the same pointwise formula as either SG2 or SG3 depending on
whether bm is 2 or 3.2 For instance, the gasket corresponding to (2, 3, 2, 3, . . .)
will have the same pointwise Laplacian formula as SG2 on levels 1, 3, 5, . . . and
SG3 on levels 2, 4, 6, . . .. Finally, by taking the limit of these pointwise formu-
las, it is possible to define a Laplacian on the actual gasket. At each stage the
Laplacian renormalization factor for SG2 or SG3 is used depending on what bi

is.
Now that we have a well-defined Laplacian on this new class of gaskets, a

natural thing to do is to study eigenfunctions of this Laplacian. In fact, using
our knowledge of spectral decimation on SG2 and SG3, it is possible to develop
a spectral decimation method on any of these gaskets. The main idea here is
that all the processes involved in the spectral decimation for SG2 and SG3 were
local. Our first step is to define an eigenfunction extension formula. Recall
that in deriving the eigenfunction extension formula for SG2 and SG3 it was
only necessary to work inside one cell of the gasket. Similarly, in computing
the eigenvalues associated with eigenfunction extension formula, it was only
necessary to examine two (or for certain vertices of SG3 three) neighboring
cells. So extending eigenfunctions is an entirely local process. Thus, for a more
general gasket we can utilize the eigenfunction extension formulas we already
know for SG2 and SG3. In particular, if bm+1 = 2 (respectively bm+1 = 3)
we can use the eigenfunction extension formula for SG2 (respectively SG3) to
extend an eigenfunction on level m to one on level m + 1. When extending
an eigenfunction from level m to level m + 1, the forbidden eigenvalues will
correspond to the forbidden eigenvalues for SG2 or SG3 depending on whether
bm+1 is 2 or 3.

The next step is to examine the eigenfunctions on these general gaskets that
do not arise from the eigenfunction extension algorithm. Recall that for both
SG2 and SG3, we were able to come up with explicit formulas in terms of Cm,
Tm, and Vm for the number of eigenfunctions that are “born” on level m + 1.
To derive these formulas, recall that only the structure of the fractal on levels
m and m + 1 was used. Furthermore, the only things used about the structure
of the fractal on level m were the values for Cm, Tm, and Vm. For this reason,
in the case of a more general gasket, the same formulas can be used as were
used for SG2 and SG3. If bm+1 = 2, use the SG2 formulas and if bm+1 = 3, use
the SG3 formulas. By counting them, it can be verified that, together with the
eigenfunction extension formulas, this gives the correct number of eigenfunctions
for level m + 1. Thus, we have a working spectral decimation method for this
more general class of gaskets.

2Intuitively this makes sense since at any vertex on level m, locally it is not possible to
determine bi for i < m.
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1.6 Spectral Gaps

Now we want to study the spectrum of the Laplacian on these general gaskets.
The two things we will demonstrate are that, in general, there are always gaps
in the spectrum of the Laplacian and that, in certain cases, the set of ratios of
eigenvalues has gaps.

It is easy to see by examining the spectral decimation method that all eigen-
functions on any of these gaskets will have eigenvalues between 0 and 6 (ignoring
renormalization for now). All of the “born” eigenfunctions satisfy this criteria
and it is easy to verify that for both SG2 and SG3 that the eigenfunction ex-
tension formula extends eigenfunctions with eigenvalues in [0, 6] to ones with
eigenvalues in [0, 6] (for SG3 see Figure 5). Now we want to show that there
are gaps in the spectrum of eigenvalues on level m. All of the eigenvalues on
level m will lie in the image of the inverse of the appropriate decimation func-
tion applied to the interval [0, 6] m− 1 times plus a finite number of exceptions
arising from the eigenfunctions born on levels 2, 3, . . . m. Now notice that the
inverse to the decimation function for SG2 and for SG3 has gaps in its range.
More precisely, the inverse decimation functions for SG2 together map [0, 6] to
[0, 2]∪ [3, 5] and the inverse decimation functions for SG3 together map [0, 6] to
[0, 3−

√
5] ∪ [3−

√
2, 3] ∪ [4, 3 +

√
2] ∪ [5, 3 +

√
5]. Thus, with each iteration of

these functions, more gaps are introduced and it is clear that there will be gaps
in the spectrum on level m. From this it follows that in the limit the spectrum
will have gaps too. In fact, it is easy to see that the spectrum will resemble a
Cantor set.

Now we will outline an algorithm to find gaps in the ratios of eigenvalues.
We will outline this algorithm for the special case of Dirichlet eigenfunction on
SG3, but it will be clear how it can be generalized to the Neumann case and
for any of the more general gaskets we have studied.

First, label the four branches of the inverse decimation function from bottom
to top (see Figure 5) R−1

31 , R−1
32 , R−1

33 , and R−1
34 . Now we need to think about how

eigenvalues for the Laplacian are obtained. First, we start on some level with an
eigenvalue λ associated to an eigenfunction born on that level. Then, in some
order, the four functions R−1

31 , R−1
32 , R−1

33 , and R−1
34 are repeatedly applied to λ.

Recall that at each stage we also have to multiply by the renormalization factor
of 90/7, so in order to get a finite limit, it is necessary that the unrenormalized
limit be 0. Thus, we can only apply R−1

32 , R−1
33 , and R−1

34 finitely many times
and there must exist a point after which we only apply R−1

31 .
Now we can outline a procedure for finding gaps in the ratios. The first

step is to find a cover for the spectrum of eigenvalues (ignoring renormalization
factors). We can start with [0, 6] and refine it in the same we did to find
gaps in the spectrum: repeatedly apply the four inverse decimation functions.
We then need to add a finite number of values corresponding to the “born”
eigenfunctions. The more we refine our cover, the more gaps in the ratios we
can hope to find. Every eigenvalue (except the one obtained by starting with
3−

√
5 on level 1 and repeatedly applying R−1

31 ) can be obtained by repeatedly
applying R−1

31 to an eigenvalue λ of the level m approximation with the condition
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that λ is not in the range of R−1
31 . Thus, we can ignore the part of the spectrum

in the range of R−1
31 . Call our cover with this portion removed C. Now we

compute all possible ratios that can arise by starting with two eigenvalues λ1

and λ2 in C, going to the limit by repeatedly applying R−1
31 to λ1 and λ2 (and

renormalizing), and then taking the ratio. Let the m1 and m2 respectively be
the last level λ1 and λ2 are not in the range of R−1

31 . Observe that if we replaced
m1 with m1 + 1, the ratio will just change by a factor of 90/7. Thus, except for
a few exceptions (we have to be careful with the eigenvalues that come from the
eigenfunctions on level 1 with eigenvalue 3±

√
5 since 3±

√
5 never again appears

as an eigenvalue), if r is a ratio of eigenvalues, so is 90/7r and 7/90r. Also, it
is easy to see that if r is a ratio, then 1/r will be one too. For this reason, it
is enough to look for gaps in the interval [1, 90/7]. Also, since we are dividing
the eigenvalues, the actual values of m1 and m2 are unimportant; all we need
to know is m1−m2. Then, it is easy to see that since we only care about ratios
in [1, 90/7] that we can assume that |m1 −m2| ≤ 1. Finally, we do not actually
know all the eigenvalues we want to take ratios of; we just know intervals they
lie in. However, given two intervals, it is an easy exercise to compute all ratios
of eigenvalues in those intervals (just work with the endpoints).

Now we have all the necessary tools for an algorithm for computing gaps
in the spectrum of ratios. First we take a suitable cover made up of intervals
and points that all our eigenvalues (unrenormalized) lie in. Next, for any two
intervals (and/or points) in this collection, we compute all possible ratios (in
[0, 90/7] )of eigenvalues obtained by applying R−1

31 to possible eigenvalues (for
the approximation) in these intervals (and/or points). This provides us with a
cover of the spectrum of ratios and we can then easily check for gaps. While
some of the details of this algorithm are missing, it should be clear that this is
a feasible way to compute gaps in the ratios and this method could easily be
implemented on a computer (and, in fact, it has been). For more details, see
www.math.cornell.edu/˜sld32.

One important thing about this algorithm is that it cannot be used to con-
clusively say gaps do not exist. That is, any gaps it finds do exist, but just
because it does not find any gaps, does not mean they are not there. We at-
tempted to use this algorithm to show that any of the general gaskets we have
studied have gaps in the spectrum of the ratios. However, the computations
overwhelmed the computer before gaps could be found in all cases 3. In many
cases, though, we were able to find gaps. It can be worked out by hand that
SG2 has gaps in the spectrum of ratios. Using a computer it can be verified
that SG3 also has gaps in the spectrum. Also, any gasket corresponding to a
sequence of 2′s and 3′s that can be seperated into blocks of 23 and 32 will have
gaps in the spectrum of ratios. Finally, in many other specific cases, gaps were
found in the spectrum of ratios.

3In large part because as the cover of the spectrum of eigenvalues is refined, the number
of intervals that have to be considered grows exponentially

14



2 Miscellaneous Results and Calculations

2.1 An Integral Calculation

The goal of this section is to derive a formula for the norm of an eigenfunction
on SG3. In general, we know the norm of function on level m + 1 is given by

‖f‖2m+1 =
∑

x∈Vm+1

w(x)|f(x)|2

where w(x) is the number of cells x is in. We can rewrite this formula as:

‖f‖2m+1 = ‖f‖2m +
∑

x∈Vm+1\Vm

w(x)|f |2

Now, using the eigenfunction extension formula, we want to rewrite the
second summand. Recall the weights for the eigenfunction extension formula
on SG3

a =
1

3− λ
+

36− 7λ

3(3− λ)(5− λ)(4− 6λ + λ2)
(9)

b =
16− 3λ

3(5− λ)(4− 6λ + λ2)
(10)

c =
36− 7λ

3(3− λ)(5− λ)(4− 6λ + λ2)
(11)

d =
4

3(4− 6λ + λ2)
(12)

Now we will work within one cell. Let that cell have values x,y, and z on
the boundary.

Now, using the eigenfunction extension formula, we can compute the values
on the interior of the cell in terms of the values on the boundary. The value of
the middle vertex will be

(f(x) + f(y) + f(z))d
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If we square this we get

d2(f(x) + f(y) + f(z)) + 2d2(f(x)f(y) + f(y)f(z) + f(x)f(z))

Next we compute the value on one of the other vertices. This will be like

af(x) + bf(y) + cf(z)

The sum of the squares of values on the interior vertices is easily computed
as:

(2a2+2b2+2c2)(f(x)2+f(y)2+f(z)2)+(4ab+4ac+4bc)(f(x)f(y)+f(y)f(z)+f(x)f(z))

Note that w is 3 for the middle vertex and 2 for the other ones. This gives
us

(4a2+4b2+4c2+3d2)(f(x)2+f(y)2+f(z)2)+(8ab+8ac+8bc+6d2)(f(x)f(y)+f(y)f(z)+f(x)f(z))

for the weighted sum of |f |2 restricted to this one cell. Now sum this over all
cells and ∑

x∈Vm+1\Vm

w(x)|f(x)|2 = (4a2 + 4b2 + 4c2 + 3d2)‖f‖2m (13)

+ (8ab + 8ac + 8bc + 6d2)
∑
x∼y

f(x)f(y) (14)

Next we need to compute
∑

x∼y f(x)f(y). To do this we will use the weak
formulation for the Laplacian.∑

x∼y

(f(x)− f(y))2 = Em(f, f) = −
∫

∆ffdµ

But f is an eigenfunction, so ∆f = −λmf . Make this substitution and∑
x∼y

(f(x)− f(y))2 = λm

∫
f2dµ

Expand (f(x) − f(y))2 and replace
∫

f2dµ with ‖f‖2m. Simplified, this be-
comes

−2
∑
x∼y

f(x)f(y) + 2‖f‖2m = λm‖f‖2m

and finally: ∑
x∼y

f(x)f(y) =
(2− λm)‖f‖2m

2

Now substitute this into equation 14 and also use the eigenvalue extension
algorithm to write λm in terms of λm+1. Simplified this gives the following
formula for the norm of f on level m + 1 in terms of the norm on level m.

‖f‖2m+1 = 2‖f‖2m
−11760 + 60200λm+1 − 79654λ2

m+1 + 47267λ3
m+1 − 14905λ4

m+1 + 2605λ5
m+1 − 239λ6

m+1 + 9λ7
m+1

3(λm+1 − 5)2(λm+1 − 3)2(3λm+1 − 14)(4 − 6λm+1 + λ2
m+1)2

(15)
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