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INTRODUCTION
Can you raise the visibility of key calculus concepts, promote a more active
learning environment, support young instructors in their professional devel-
opment in their early formative teaching experiences, and improve student
learning? We think the answer is yes, if you ask students Good Questions
and encourage them to refine their thinking with their peers. What makes
a question good?

1 Support for the Good Questions project was provided by the National Science
Foundation's Course, Curriculum, and Laboratory Improvement Program under grant
DUE-0231154. Opinions expressed are those of the authors and not necessarily those of
the Foundation.
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Imagine a classroom where the instructor pauses every fifteen minutes
or so to ask a highly conceptual multiple choice or True-False question. For
example

True or False: You were once exactly w feet tall.

Students think about the question independently and register their vote. As
the instructor uses that feedback to start to assess the state of the class's
understanding, students are encouraged to discuss their answers with some-
one sitting near by, preferably a student who is thinking about the problem
differently. As the room erupts with inquires of "what did you think?"
and "why did you think that?" , and with replies of "well I'm not sure, but I
think..." , the instructor listens in on conversations. Students share their rea-
soning, argue its validity, and work together as they think more deeply about
what the question means, and how the mathematical ideas, definitions, and
or theorems from their text or lecture might apply. The instructor calls for a
revote, shares the result with the class, and asks for a student who changed
their mind to share with the class what caused them to change their mind.
In the space of four to five minutes the instructor has provoked students
to think, surveyed students' votes, listened to students' conversations, and
obtained valuable insight into students' thinking about key concepts. Dur-
ing that same time students have wondered, conjectured, reasoned, argued,
justified, probed mathematical concepts, refined their mathematical reason-
ing and understanding, and shared that new understanding with the class.
This is what we call a "Good Questions" approach with peer discussion.

Good Questions for teaching mathematics is adapted from Eric Mazur's
[3] ConcepTests and Peer Instruction for teaching physics. There is a
significant body of research and results in physics education that show
that interactive engagement in undergraduate physics instruction leads to
higher student achievement. (See Hake [2] for a recent overview and refer-
ences.) Crouch and Mazur's [1] work shows that well constructed multiple
choice questions, used in conjunction with pre-class warmup reading as-
signments, can engage students in productive peer discussions that enhance
student learning. In adapting Mazur's work to teaching calculus we learned
(Santana-Vega [6]) that a well constructed multiple choice question and the
ensuing peer discussion it can provoke is a powerful teaching tool.

Our project was not the first to adapt Mazur's approach to interactive
engagement to the calculus classroom. But our questions are somewhat dif-
ferent than those developed by Scott Pilzer [4] who developed ConcepTests
for calculus early on and then expanded upon that work with others from
the Calculus Consortium. (See Pilzer et al. [5].) A full collection of our
questions in downloadable forms can be found at our project website
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http: //www. math. Cornell. edu/~GoodQuest ions

and at the Canadian in-Class Questions Database

http://cinqdb.physics.utoronto.ca

We tested Good Questions (GQ) Fall 2003 in traditional first semester
calculus at Cornell University. There were 330 students enrolled in 17 small
sections of 15 to 26 students. These small sections were taught by 14 differ-
ent instructors who had the freedom to choose their teaching method, in-
cluding whether or not to use GQ. Class met 4 days a week for 50 minutes
with the instructor. We used electronic polling devices, student surveys,
instructor surveys, and exam performance throughout the term to collect
data about which questions were used, how they were used, and what effect
using questions had on student performance.

But what do we mean by a good question? Aren't all questions that
test student knowledge and mastery of the material equally "good"? One
might think for example, that a good question should be unambiguously
clear, have a unique correct solution, and be framed with perfect mathe-
matical precision. We found that the best questions, as measured by how
frequently instructors chose to use them and on how successful questions
were in stimulating class discussion, were those that had more than one
interpretation, or had more than one or perhaps no solution. Questions like
that were somehow more discussable.

For example, in the question about being n feet tall, there is usually a
reliable but small minority, about 20-25%, who shock their peers by voting
"False". False votes appear even more shocking if the question is asked,
"true or false you were once exactly 3 feet tall". When encouraged to explain
their reasoning, those who vote false usually convince their classmates that
they have a valid concern. They explain that they believe that growth
happens in a discrete way, a molecule at a time. Therefore, they may have
skipped over the TT foot mark. In the end the discussion centers on whether
the hypothesis of the theorem is satisfied. This question not only gives a
teacher the opportunity to stimulate a good discussion of the intermediate
value theorem in an intuitive setting, but it provides a context to discuss
the simplifying assumptions we often make in assuming continuity, and the
challenges of building a mathematical model.

A good question can help teachers and students probe and reveal com-
mon misunderstandings and misconceptions. For example, we found some
students vote "False" even though they see growth as a continuous function
of time. These students argue that they can never be exactly TT feet tall be-
cause TT is irrational. Their justification runs something like this, "because
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TT is irrational, it cannot be precisely measured, therefore you can never be
exactly TT feet tall" . This kind of reasoning usually brings responses from
other students that the intermediate value theorem is an existence theorem,
and once growth is assumed to be continuous, there had to be a time that
they were TT feet tall even if they don't know TT'S exact location on a ruler. A
good question invites students to discuss the mathematics they are learning,
what it means to them, and occasionally it provokes deeper discussion of
fundamental concepts and ideas.

Good questions draw on students prior knowledge and ways of thinking
and connect it to the mathematics they are learning. For example, students
naturally approximate e2 by squaring numbers close to e. The next question
invites students to link this intuitive and practical notion of continuity to
the formal definition of continuity. It also helps students understand the
nature of real numbers and why continuous functions are so highly prized.

You decide to estimate e2 by squaring longer decimal approxi-
mations ofe = 2.71828 . . ..

(a) This is a good idea because e is a rational number.
(b) This is a good idea because y = x2 is a continuous function.
(c) This is a bad idea because e is irrational.
(d) This is a good idea because y = ex is a continuous function.

We found that on the first polling, generally 60-70% of students chose
(d), 15-20% chose (b) which is correct, 10-15% chose (c), and 5% chose (a).
In the course of peer discussion as students try to articulate why they think
(d) is the correct response, they find themselves looking for connections
between the formal definition of continuity and sketches of y = ex. What
they find is that the process that the problem describes involves sneaking
up on e, not 2. After approximately 3-4 minutes of peer discussion, the
second polling usually shows that better than 80% of the students choose
(b). In general this large shift in correct responses is not due to students
with the correct response convincing others; it is students with incorrect
responses clarifying their thinking and making the discovery themselves.
Connecting their intuition with the formal mathematical language gives
students a precise way of discussing a phenomenon they have experienced
intuitively, that you can get a number as close as you like to e2 by squaring
a number that is close enough to e. A Good Question provokes students to
use the language of mathematics in natural ways to describe processes and
procedures that are already natural and intuitive to them. In this way the
concepts we are defining with mathematical language and symbols take on
a refining and clarifying role.
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A good collection of questions needs to include a wide variety of types of
questions for different purposes. The next two questions are more traditional
and have been successful in revealing student misunderstandings about what
a "tangent line" is in the context of calculus.

At the point (0,0) the graph of y = \x\

(a) has exactly one tangent line, y = 0.
(b) has infinitely many tangent lines.
(c) has two tangent lines, y = x and y = —x
(d) has no tangent line.

On the first vote when used shortly after introducing the notion of tan-
gent line in calculus, class responses frequently are: a) 20%, b) 45% , c)
10%, d) 25%. By listening to students' discussions we have found that even
when students have learned that the derivative of this function does not
exist at x=0, students have a strongly held belief that a tangent line is a
line that touches at one point. As a result, a) and b) are very popular, c)
captures some guessers and a very small group of students who essentially
think of tangent lines as support lines, or a kind of one-sided local linearity.
The correct answer (d) does gain in favor as students discuss their ideas.
The most common arguments go as follows: "A tangent line at (0,0) needs
to have a slope, that is the derivative at (0,0). The derivative does not
exist at a corner point (a fact students seem to know). As a result, there
cannot be a tangent line at (0,0)." This line of reasoning is much more pro-
cedural and less intuitive than an argument that relies on the idea of "local
linearity". In our tests of this question we rarely hear students refer to the
tangent line as the line the graph resembles if you zoom in close enough.
The next Good Question helps to raise the visibility of "local linearity" and
to confront the danger in the "touching at one point" interpretation.

At the point (0,0) the graph of the function f ( x ) = x

(a) has exactly one tangent line, y = 0.
(b) has infinitely many tangent lines.
(c) has exactly one tangent line y = x
(d) has no tangent line.

On the first vote when used immediately after the question above, class
responses frequently are: a) 5%, b) 10%, c) 30%, d) 55%. The ensuing
peer discussion usually results in a large shift, if not unanimous agreement
to the correct response, c). Here again students reason in a very formal
way, they compute the derivative, f ' ( x ) = 1. They use the slope and
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the point (0,0) to "get the equation of the tangent line", y = x. These
Good Questions help instructors see how difficult it is for many students to
adopt the local linearity notion of tangent line. Such an interpretation of
the tangent line would have allowed them to see immediately that a linear
function is identically equal to its tangent line at every point. A good
question is a helpful tool for giving an instructor insight into how students
reason about the mathematics they are learning.

Our collection includes a number of Good Questions that generate very-
deep discussions about what the derivative is by asking students to interpret
the derivative in a physical context that is natural, but non-numerical and
non- graphical. For example:

As you cut slices off a loaf of bread the volume changes as you
change of the length of the loaf. The derivative of the volume
with respect to the length is

(a) the surface area of the part of the loaf that's left.
(b) the area of the cut face of the loaf.
(c) the volume of the last slice divided by the thickness of the

last slice.
(d) the volume of the last slice you cut.

Students realize that the volume is changing as the length of the loaf
changes, but they are unaccustomed to thinking about rate of change in
physical terms that do not depend on time. Many students guess a) and b),
but they are not at all sure. They know there is a relationship between the
derivative of volume and area for boxes and spheres, but a loaf of bread?
A few think that c) looks close (and they are right). During the discussion,
some students begin to see that the change in the volume is the volume of
the last slice, and that the change in the length is the thickness of that slice.
What is very difficult for them to notice on their own is that that difference
quotient is trapped between the largest and smallest cross sectional area
of the slice, and that as the thickness of the last slice approaches 0, the
difference quotient is trapped between two numbers that are approaching
the same number, the area of the cut face of the loaf. This problem remains
a mystery to students for quite some time. However, it is a very physical
way for students to see that two quantities that are approaching zero, the
change in the volume (i.e., the volume of the slice) and the change in the
length (i.e., the thickness of the slice), have a ratio that is approaching a
number they can see-the cross sectional area of the loaf at the place where
you removed the slice.
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The bread question is part of a sequence of questions we have about
cutting things up and asking what the derivative is. For example, when you
cut a slice of pizza, the size of your slice changes as a function of the angle
you make when you make the second cut. What is the derivative of that
function? If you slice your pizza by chopping it with a cleaver in parallel
slices along its length (like the loaf of bread) what's the derivative of that
function? If you decide to eat your pizza by cutting off concentric rings of
pizza, i.e by changing its radius, what's the derivative of that function? If
your pizza is circular, the answers are fairly easy. If your pizza is amoeba
shaped, the responses require much deeper thought.

SOME CHARACTERISTICS
OF A GOOD QUESTION

• Stimulates students' interest and curiosity in mathematics.
• Helps students monitor their understanding.
• Offers students frequent opportunities to make conjectures and argue

about their validity.
• Draws on students' prior knowledge, understanding, and/or misun-

derstanding.
• Provides instructors a tool for frequent formative assessments of what

their students are learning.
• Supports instructors' efforts to foster an active learning environment.

SUMMARY OF PRELIMINARY FINDINGS

What did we learn about how instructors used GQ?
What kinds of questions did instructors choose to use?

Good Questions were tagged with three labels (Quick Check, Probing, and
Deep) that reflected that questions were designed to assess and to engage
students in progressively deeper levels of mathematical thinking and reason-
ing. Most instructors most frequently used Quick Checks in their teaching,
but two instructors primarily used Probing and Deep questions.

How frequently did instructors use GQ?
We surveyed instructors and students three times in the term to determine
how frequently and in what ways Good Questions were being used in class.
Generally the surveys were consistent, but where instructors and students
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gave different reports on the use of peer discussion, we relied on the students'
assessment.

Instructors' patterns of use of GQ fell into four groups:

• Deep- Deep and Probing questions at least 1, but usually 2 or 3 days
each week, and used 2 or 3 questions per class, with peer discussion.

• Heavy plus Peer- Primarily Quick Check questions 3-4 days per week,
and used 2 or 3 questions per class with peer discussion;

• Heavy no Peer- Primarily Quick Checks 3 or 4 days each week, and
used 2 or 3 questions per class, with little or no peer discussion.

• Light to Nil Used GQ sporadically if ever, and used little or no peer
discussion.

What kind of data on student performance did we gather?

• Regular course-wide common exams- 3 regular 100 point exams (called
preliminary or Prelims) and one 150 point comprehensive final exam.
Students papers were graded consistently across all classes. Each pre-
liminary exam had questions identified as conceptual. We recorded
conceptual subscores in addition to total scores.

• SAT and demographic data- were provided to us by university admin-
istration.

All Students
Variable

Preliml
Conceptual

Subscore
Prelim2

Prelim2 Con.
PrelimS

PrelimS Con.
Final Exam

No Peer
Means

82 (B)
20

76 (B-)
18

72 (C+)
32

117 (B-)

N

136
135

153
153
152
148
153

Peer
Means

86 (B+)
21

80 (B)
20

77 (B-)
35

126 (B)

N

97
97

96
96
96
96
96

Null: Means
Equal?

(a = 0.05)
Reject
Reject

Reject
Reject
Reject
Reject
Reject

Level of
Signif.

0.0029596
0.04052

0.0040231
0.0011933
0.0040928
0.013646

0.00018824

Table 1. 1-sided T-Tests for Difference in Means
Between "Peer" and "No Peer".
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Women
Variable

Preliml
Preliml Con.

Prelim2
Prelim2 Con.

Prelim.3
PrelimS Con.
Final Exam

No Peer
Means

82 (B)
19

76 (B-)
18

73 (B-)
33

115 (B-)

N

76
76
86
86
85
83
86

Peer
Means

86 (B+)
21

79 (B)
20

76 (B-)
34

125 (B)

N

57
57
56
56
57
57
56

Null: Means
Equal?

(a = 0.05)
Reject
Accept
Reject
Reject
Accept
Accept
Reject

Level of
Signif.

0.015822
0.056766
0.025198
0.028832
0.10499
0.23062

0.0023054

Men
Variable

Preliml
Preliml Con.

Prelim2
Prelim2 Con.

PrelimS
PrelimS Con.
Final Exam

No Peer
Means

83 (B)
21

76 (B-)
18

71 (C+)
31

118 (B-)

N

60
59
66
66
66
65
66

Peer
Means

87 (B+)
22

80 (B)
21

78 (B-)
35

126 (B)

N

40
40
40
40
39
39
40

Null: Means
Equal?

(a = 0.05)
Reject
Accept
Reject
Reject
Reject
Reject
Reject

Level of
Signif.

0.041932
0.19529
0.032915
0.005643

0.0058032
0.0092971
0.015522

Under Represented Minorities

Variable

Preliml
Preliml Con.

Prelim2
Prelim2 Con.

PrelimS
PrelimS Con.
Final Exam

No Peer
Means

78 (B-)
17

69 (C)
17

67 (C)
30

106 (C)

N

18
18
24
24
24
24
24

Peer
Means

81 (B)
19

72 (C+)
17

71 (C+)
31

117 (B-)

N

22
22
22
22
21
21
21

Null: Means
Equal?

(a = 0.05)
Accept
Accept
Accept
Accept
Accept
Accept
Reject

Level of
Signif.

0.21859
0.28009
0.29334
0.4776
0.19238
0.32179

0.037757

Table 1. (continued) 1-sided T-Tests for Difference
in Means Between "Peer" and "No Peer".
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CONCLUDING REMARKS
Data suggest that the benefit of using Good Questions comes from the
peer discussion, and that discussions about deeper questions may benefit
students more. The greatest effect appeared on the comprehensive final
exam for all students and all groups. Under represented minorities showed
the largest numerical difference means on the final exam, 11 points. The
data also suggest that for some students the benefit from GQ and peer
discussion may not result in higher performance on the most conceptual
questions, but that a better understanding of concepts enables them to
improve their performance in the traditional parts of the course.

Deep Heavy plus Peer Heavy no Peer Light to Nil
Figure 1. Final exam medians for different patterns of GQ use.
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